Provisioning Object-oriented
Service Clouds
for Exertion-oriented Programming

Agenda

Intro: computing science & process expression
Distribution, object & service orientation
Transdisciplinary computing processes — SO Platform
C/S, SOA, SPOA, SOOA and FSOOA

SORCER metaprogramming and programming
— EOL, VOL, VML

SORCER Operating System (SOS) and FMI
SORCER Virtual Processor and Provisioning
Conclusions

Whatever we may want to say,
we probably won't say exactly that! ‘

Marvin Minsky

From Al to Metacomputing

Al/Expertalk (PAN/PW/US) — 1971-1989
DICEtalk (CERC/WVU, DICE/DARPA) — 1989-1994
CAMnet (GE GRC/DARPA) — 1994-1995

Agile Castings (GE GRC/DARPA) — 1995-1998

WCE: UNS Notebook (GE GRC/AE), GE Plastics
Calculator, EMPIS (GE PS), ++, —1997-2000

FIPER (GE GRC/NIST) — 1999-2003

SORCER
(TTU —2002-2009, SORCERsoft/AFRL/++) — 2007-...

&

Computing's core challenge is how
not to make a mess of it.

Computing Science

Edsger Dijkstra

Pre-1990s:
JJEEY Mes |t s
CE | f
| HARDWARE, ', SOFTWARE \ BUSINESS
Post-1990s:

IT IS

. ORGANIZATIONAL ,"
\‘I:IARDWARE\:‘:, SOFTWARE N UNEEDS

- -

EE | [CE| |cs| |SE|

- -

Process Expression

 Computer science is the science of process expression

Karl Fant

* Process expression
— Symbolic expression (Language)
e grammar or metamodel (UML Behavior Diagrams)
— Physical expression (Actualization)

e computing platform
— Mogramming environment
— Operating system (Command, OO, SO)
— Processor (native or virtual)

Process Expression

Persian abacus (600 BC)

Algorism (alKhowarizmi, 825)
(algorists vs. abacists)

Mathematics (Hilbert, 1920)
(expressions complete, consistent, decidable)

Algorithm — flowchart (Markov, 1954)

Case-based, rule-based, and connectionist expressions
Logic circuits (programmable FPGA, FPAA)

Object interaction (object orientation)

MOF/UML (M2, behavior diagrams)

Service federation (service-orientation—exertions)

You don't understand anything until
you learn it more than one way.

Marvin Minsky J

Agenda

Intro: computing science & process expression
Distribution, object & service orientation
Transdisciplinary computing processes — SO Platform
C/S, SOA, SPOA, SOOA and FSOOA

SORCER metaprogramming and programming
— EOL, VOL, VML

SORCER Operating System (SOS) and FMI
SORCER Virtual Processor and Provisioning
Conclusions

Terminology & Technology

 “The computer is the network.” vs. “The network is
the computer.” (eight fallacies of network
computing)
— MS/IBM: The network is the App server.
— Oracle: The network is the database.

 “Adistributed OO system” vs. “An OO distributed
system”

— A distributed OO system — implicit network (network
transparency)

— An OO distributed system — explicit network

Composition Granularity

(multi-scale, multiple disciplines)

] —_
S Z
g R
'-l% $ " (@] S -
n 9 o = o
3 0 D S s ‘s S
o Q R o) =S w5
S) ® 2 o T E ©
3 O o = n > = >
mAlARAm
anases OO0 |
irane o=m MMM
AAAAAN ﬁﬁﬁ

Unit of Composition

(1-1) MaEBmg State Comellatlon Deeloxment Remote Amorphousness

Unit of Intraprocess

Interprocess

Abstractions of Programming Components

Mike Sobolewski 9

Agenda

Intro: computing science & process expression
Distribution, object & service orientation
Transdisciplinary computing processes — SO Platform
C/S, SOA, SPOA, SOOA and FSOOA

SORCER metaprogramming and programming
— EOL, VOL, VML

SORCER Operating System (SOS) and FMI
SORCER Virtual Processor and Provisioning
Conclusions

Data

Control Results

Ops

Transdisciplinary (TD CE) Process

Leveraging resources and reuse for R&D growth

Metaprogram

Discipline Multidisciplinary Interdisciplinary Transdisciplinary

Ops: apps, tools, utilities -> programs
Metaprogram -> program of programs
(process expression by other process expressions)

Federated CCE (FIPER)

Old Process
Conoeptual
Design
Functional)y Prelininary Design
Specification — Detsiled Design
Anglyais 81 Revise Detailed
¥sIS i Design
D’”& Aralysis £2 | Revisa | 9
SN o8 ope
" s | Produdibility

Analysis

New Process

Detailed Design
Andysis 81 | Andysis#1 = Analysis #1
Andysis#2 | Andysis 2 | Analysis 2
Cost Analysis Cost Analysis | Cost Analysis

Substantial (20%-50%) Decreased
Product Creation, Cost, and Time

. Desin
Functional
Specification

Optimized
Robust Detailed

ios: + Intelligent Master Model + Multidisciplinary Optimization
Tha Techmologies: + Design for Six Sigma + Web-Based Distibuted Architacture

™
m é‘*i' e Stanford [niversity | REVY

By providing breakthrough product design technology, FIPER will significantly
reduce product creation costs and time to market by 20-50%, while improving
design robustness. (NIST $21.5 million)

The Team:

S

FIPER Metaprogramming Domain

System
Design

Subsystem
Design

Component
Design

Service-oriented Platform

| ' /m . I W
mC; " N (@ B
VD|| Commands VD Messages
VM| | Guest OS VM 00 OS mC
(P)) ’ . ’
Dl Commands VC| Hypervisor VC Objects
_ Poi _ Pmi1 J
M (O]
C Processor //
\ L) '

Miike Sobolewski Reducing complexity by higher level abstractions

Virtualization Dependencies

Service Platform

Se rVice PrOViderS —_— V]_ } Service Processor (Service Cloud)
Service Containers —V2
Object Platforms — V3 — Service-oriented OS
Command Platforms —V4 | _| EO Programming (EOL)
Native Platforms B Var Modeling (VML)
- VO Programming (VOL)

EOL - service collaborations
VOL- multifidelity evaluation compositions
VML - multidisciplinary var-oriented composition

DMC Metamodeling Architecture

Var (evaluation)

——

Filters
c
e
Object Platform
(programming)

Messages]

Command
Platform _
(computation) : Invocation N
: Dispatcher :

[Commands

Object (state)

V1 | service Containery:"

Exertion
(metaprogramming)
[Data
Context
Service Platform
Control

(metacomputation)
Context

Services

Service OS

Ty Signature (QoS)

Var-Model (modeling)

Vars }

Configurator

Interface

Operation

@p— composition

4— generalizar—,

SORCER SO Platform

D Service Requestors (Var-Models, Vars, Exertions)

C 5 Evaluators, Filters, Differentiators,
DS Service Beans
S

C4

C3

C2 e Object Virtual Platforms
C1 EIZ Command Virtual Platforms

Command Native Platforms

Service requestors (exertions) — commands of the SO processor (CO-C5)
SO program — an exertion executed by the SOS shell
SV —service virtualization, PV — platform virtualization g

Agenda

Intro: computing science & process expression
Distribution, object & service orientation
Transdisciplinary computing processes — SO Platform
C/S, SOA, SPOA, SOOA and FSOOA

SORCER metaprogramming and programming
— EOL, VOL, VML

SORCER Operating System (SOS) and FMI
SORCER Virtual Processor and Provisioning
Conclusions

Quantum Jumps in Platform Complexity

Sequential Programming
+ order
runtime: batch processing, OS
Multi-threaded programming
- order
+ parallelism
runtime: + concurrency support
Multi-process Programming (time-sharing)
- context
+ SW isolation (safety)
runtime: + interprocess communication (pipes, sockets)
Multi-machine Programming (client/server) (DICE, CAMnet, Agile Castings)
- global state, security, trust
+ HW isolation, scalability
runtime: + secure interprocess communication (RPC), trusted mobile code (proxying), virtual file
system, disconnected operations, leases, transactions, distributed events, deployment control
Grid Programming (SOA) (FIPER)
- resource setup
+ resource utilization, collocation, distributed resource sharing
runtime: +batch processing (job schedulers) using individual OSs to aggregate CPUs for
conventional programs execution
Metaprogramming (FSOOA) (SORCER)
- SO federated programming, DI deployment setup, untrusted mobile code, class loading
+ SO, service federation spontaneity, behavioral transfer, autonomic provisioning
runtime: + service orientation: SO processor, SO OS, and SO programming model

&

Client/Server

Client

Mike Sobolewski 20

Lookup

Service
Registry

Service

Service
Provider

Mike Sobolewski 21

SOOA Terminology

Service type — interface type (service)

Service object — an object implementing its remote service
types (services) accessible via its proxy object

Service provider — service object accepting remote
invocations on one or more its service types

Service bean— local object (POJO) implementing interface
types
Service container (service node or cybernode) — service

object that deploys and manages one or more service
providers

Discovery — finding out a service registry
Lookup — finding out a service proxy object

SOOA Three Neutralities & BT in SOOA

Discovery & Lookup

Discovery & Register
Service
Reqist *
Service gistry
Service
Provider
Requestor

\ Exported Classes /

Mike Sobolewski

Neutralities

Implementation
— Service type (not IDL description)

Location

— Dynamic (not static, no endpoints)
Wire protocol

— Any (not fixed, e.g. SOAP)

Data format

— Generic (Context interface) with conversion on
external boundaries to XML (no XML within SORCER)

&

Read-write vs. Remote Invocation
Six RPC Generations

First generation RPCs: Sun RPC (ONC RPC), DCE RPC

language, architecture, OS independent
IDL

Second generation RPCs: CORBA, Microsoft DCOM-ORPC

adds object support

Third generation: Java RMI

it is conceptually similar to the second generation but supports the
semantics of object invocation in different address space

is built for Java only

fits cleanly into the language (interfaces, serialization)
no need for standardized data representation

with behavioral transfer

Fourth generation RPCs: Jini Extensible Remote Invocation (Jini ERI)

dynamic proxies
dynamic configurations (dependency injection
security

Fifth generation RPCs: Web Services RPC and the XML bandwagon

SOAP
WSDL

Sixth generation RPCs: SORCER Federated Method Invocation (FMI)

invocation on multiple federating services (virtual metaprocessor)

Net-Centric FSOOA

Service
Registry

\ "

Exertion Service
Shell Provider

Exported Classes

Deployed or provisioned

Mike Sobolewski 26

Agenda

Intro: computing science & process expression
Distribution, object & service orientation
Transdisciplinary computing processes — SO Platform
C/S, SOA, SPOA, SOOA and FSOOA

SORCER metaprogramming and programming
— EOL, VOL, VML

SORCER Operating System (SOS) and FMI
SORCER Virtual Processor and Provisioning
Conclusions

Language — Mankind
Writing — Civilization

Tartaria
tablets

<>
/\

tortoise
shells

~ movable metal type, and composing stick,
descended from Gutenberg's press

cuneiform
script

28

Mike

Language Eng. vs. SW Eng.

Problem Mogramming Software Solution
Domain Language Language Domain
~
' EOL

VOL Java, Scala

VML Groovy, Perl, RUby
Y | SORCER Java AP | UNIX Scripting

SORCER User Agents || ©: C*+ Fortran

Express Transform Incorporate N 44

Language engineering is the art of creating languages.

Requestor Metaprogramming Abstractions

* EO Programming
— Service collaborations

* VO Programming
— Active variables (vars) composition

* VO Modeling

— Model-driven VOP for multi-fidelity, multi-
scale, multi-disciplinary collaborations

scripting, Java API, hybrid, visual
&

Service Composition

f = f1(£2, £3, £4(f5, £6)

Meta
Program
(Exertion)

Signature type: 4/ preprocess /A7 process / # postprocess &7 append

D Job
A Task
- Context

E Signature

Task: network instruction

task (
sig("multiply", Multiplier.class),
context (
input ("arg/x1”, 10.0d),
input ("arg/x2”, 50.0d)))

Job: service composition
f1(f2(f4, f5), f3)

Task f4 = task("f4", op("multiply", Multiplier.class),
context ("multiply", input ("arg/x1”, 10.0d),
input ("arg/x2”, 50.0d), out("result/yl”, null)));

Task f5 = task("f5", op("add", Adder.class),
context ("add", input ("arg/x3”, 20.0d),
input ("arg/x4”, 80.0d), output ("result/y2”, null)));

Task £3 = task("f3", op("subtract", Subtractor.class),
context ("subtract", input ("arg/x5”, null),
input ("arg/x6”, null), output ("result/y3”, null)));

Job fl= job("f1l", job("f2", f4, f£5,
strategy (Flow.PAR, Access.PULL)), f£3,
pipe (output (£f4, "result/yl”), input(£f3, "arg/x5")),
pipe (output (£5, "result/y2”), input(£3, "arg/x6")));

Can use Control Flow Exertions

Types of Variables

Variable (mathematics), a symbol that represents a
guantity in a mathematical expression

Variable (programming), a symbolic name associated
with a value that may be changed

Variable (OO programming), a set of object’s attributes
accessible via ‘getters’

Variable (SO programming), a triplet

<value, evaluator, filter>

— value: a valid quantity

— evaluator: a service with dependent variables (composition)
— filter: a getter

&

Basic Variable Structure (VFE)

Z = y,(Xx;,X,,X3)

Arg
Var y1 - X1 || X2 || X3
i . A
Evaluators y N i
v A4 < 4 ' Pipeline of filters E
yle1 y1f1 |
'?u: y o< yi u_k _____ ~ Value i
E Differentiators
(o Sensitivities
dy1 dX1 Il Values of derivative Vars
dy1dx2 ||
dy1 dX3 << - - dependency
r—
|I

Service Orientation

* A service: the work performed by a variable’s
evaluator
* An evaluator defines:
— Arguments (variable composition)
— Processing services (mutifidelity)
— Differentiation services (mutifidelity)

Type of Evaluator Services

Command services (a)

— Execute command (executables)

Scripting services (a)

— Execute expression (e.g., scripts, Java expressions)

OO services (b)
— Method invocation, RMI

Federated services (c)

— Federated method invocation (exertions)
e Execute remote command
* Execute expression remotely
 Remote method invocation
* Federated method invocation

Evaluators do realize other process expressions!—enable metaprogramming

Agenda

Intro: computing science & process expression
Distribution, object & service orientation
Transdisciplinary computing processes — SO Platform
C/S, SOA, SPOA, SOOA and FSOOA

SORCER metaprogramming and programming
— EOL, VOL, VML

SORCER Operating System (SOS) and FMI
SORCER Virtual Processor and Provisioning
Conclusions

Push vs. Pull execution

Provider matching
task signature

Take

Exertion matching
provider signature

PARALLEL Exertion
)
SEQUENTIAL Space

Pull execution allows for a pandemonium SO architecture.

Applying OO to Network (FMI)

Service request is an object of type:
Exertion =Data Context + Signatures

Exertions are invoked by calling exert:
Exertionffexert (Transaction) :Exertion

Exertions are executed by the network shell using collaborating
service providers of type: Servicer
— Service providers form P2P (S2S) environment

— Service is requested by calling dynamically the service method
Servicertfiservice (Exertion, Transaction) :Exertion

— A service provider is identified by the exertion signature’s interface type and
optional attributes

The signature operation <operation> is invoked on the matching
service object:

public Context <operation>(Context) via
Exerterffexert (Exertion, Transaction) :Exertion

The SORCER Triple Command Pattern “3

UNIX Platform vs. SORCER Platform
. Juwx_ [SORCER

Data File - file system Data context - objects

Data flow Pipes Data context pipes

Cohesion Everything is a file Everything is a service
Processor Native Service providers

Interpreter Shell Exertion (network) shell
System language C Java/lJini/Rio/SORCER API
E]%r;gagzd gcl:lilp))(tis:ge” EO/VO/MD scripting

Process control Command flow Control context & exertion flow
strategy logic logic (looping and branching)
Executable codes Many choices Many choices

Unix pipes — processes; SORCER pipes — data contexts
Pipeline vs. SORCER federation — exertion + control context + control flow exertions

Local shell vs. network shell
Mike Sobolewski 41

G

Agenda

Intro: computing science & process expression
Distribution, object & service orientation
Transdisciplinary computing processes — SO Platform
C/S, SOA, SPOA, SOOA and FSOOA

SORCER metaprogramming and programming
— EOL, VOL, VML

SORCER Operating System (SOS) and FMI
SORCER Virtual Processor and Provisioning
Conclusions

Exerting Dynamic Collaborations

Federation
(Processor)

Service
Collaboration
Management
(SOS)

@ Federation Member
SO Program

(Requestor) Job

- Task
- Context

D Signature

Signature type: & / preprocess /477 process / # postprocess &7 append

e

SORCER Platform: Services

Service processor
(Service cloud)

N

app-processor

(app-cloud) federation

SOS-processor
(sos-cloud)

DS services

Exertion

Native Platform
Command Platform (V)
Object Platform (V)
Service Node (V)

Cybernode (V) :
Service Provider (P) Blue indicates services on VCP g

QoS and SLA

Quality of Service (QoS) Parameter
a technical characteristic or performance
benchmark of a resource

Service Level Agreement (SLA)

a contract signed between a service requestor
and a service provider for a specific time or
task. It specifies that during the execution
certain QoS parameters should maintain an
agreed-on level or a fixed value.

Provisioning Component Diagram

cmp SERVME Architecture /

'70, 1 El Legend
Senice Requestor %l Execution -~ —-oo= | Rendezvous Provider ’
oy e — (Jobber or Spacer) [[] SORCER components
QosManagement == \ Speoer - | hber i
o $:| Spacer g (o D SORCER white-box components
- - o) r
| Dy Q?AS Provider Jobbe‘_(J\ rl\ [] SERVME components
00955/©/ ccessor ¢ ot Eecution CuosCmtatoger Bl cOTS components
EC(atal _< Servioer ,’, Serviégr
Exertion Senvi - ’ |
icer _{ e e 1
Servioe: - T QosCst‘sloger\\ ,’/
: > : N
’ On-demand Rio Provisioner

Provisioner DeployAdmin

1 7 ~
& Yo w7
QosCatsloger >\k4-> =T
A mmmmmmmmm = " .

SlaMonitering

SlaMonitor Ul |———— SlaMonitor QosCatalog Senvice Provider

EventListener Jmx
SlaMsansgement SlaManagement Meonitering
a SlaManagement e -
QosMonitor Ul f—— —=-==========-====------------- "—==*-:_—;_—:}>O— SlaPrioritization | DynsmichMBesn
SlaPrioritizer |——(r<= " Sizpricritization y—] SlaDispatcher Sl VX Beans

EventlListener

Provisioning Types

Bootstrapping

manual manual till destroyed
manual-dynamic manual yes till destroyed/configured
autonomic auto yes till destroyed/configured
on-demand auto no configured

on-demand-dynamic auto yes till destroyed/configured

Agenda

Intro: computing science & process expression
Distribution, object & service orientation
Transdisciplinary computing processes — SO Platform
C/S, SOA, SPOA, SOOA and FSOOA

SORCER metaprogramming and programming
— EOL, VOL, VML

SORCER Operating System (SOS) and FMI
SORCER Virtual Processor and Provisioning
Conclusions

Conclusions
SORCER FSOOA

Discovery/join protocols
— Location neutrality
Service provider registration
— Proxy object implementing service types
— Proxy object owned by the provider
— Proxy wire protocol(s) selected by provider
Light-weight containers (service node, cybernode)
— Small footprint JVM Hosting service providers
— Static or dynamic deployment of service providers
— Service assembly by DI
OS (Tasker, Jobber, Spacer, Cataloger, Provisioner, Cybernode, ...)
— FMI
— Synchronous, asynchronous, QoS-optimized service federations
— Provisioning
— V1-V4 Enables Two Way Computing Convergence
— SO shell

