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Abstract 
• We explore the principle that much of “the future” will be characterized by “Using 

Clouds running Data Analytics processing Big Data to solve problems in X-
Informatics”. Applications (values of X) include explicitly already Astronomy, 
Biology, Biomedicine, Business, Chemistry, Crisis, Energy, Environment, Finance, 
Health, Intelligence, Lifestyle, Marketing, Medicine, Pathology, Policy, Radar, 
Security, Sensor, Social, Sustainability, Wealth and Wellness with more fields 
defined implicitly. We discuss the implications of this concept for education and 
research. Education requires new curricula – generically called data science – which 
will be hugely popular due to the many millions of jobs opening up in both “core 
technology” and within applications where of course there are most opportunities. 
We discuss possibility of using MOOC’s to jumpstart field. On research side, big 
data (i.e. large applications) require big (i.e. scalable) algorithms on big 
infrastructure running robust convenient programming environments. We discuss 
clustering and information visualization using dimension reduction as examples of 
scalable algorithms. We compare Message Passing Interface MPI and extensions of 
MapReduce as the core technology to execute data analytics. 

• We mention FutureGrid and a software defined Computing Testbed as a Service 
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Big Data Ecosystem in One 
Sentence 

Use Clouds running Data Analytics processing Big Data to solve problems in 
X-Informatics ( or e-X) 

 
X = Astronomy, Biology, Biomedicine, Business, Chemistry, Crisis, Energy, 

Environment, Finance, Health, Intelligence, Lifestyle, Marketing, Medicine, 
Pathology, Policy, Radar, Security, Sensor, Social, Sustainability, Wealth and 

Wellness with more fields (physics) defined implicitly 
Spans Industry (AHEAD?) and Science (research) 

 
Education: Data Science see recent New York Times articles 

http://datascience101.wordpress.com/2013/04/13/new-york-times-data-
science-articles/ 
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Issues of Importance 
• Economic Imperative: There are a lot of data and a lot of jobs 
• Computing Model: Industry adopted clouds which are attractive for 

data analytics. Research has not adopted? 
• Research Model: 4th Paradigm; From Theory to Data driven science? 
• Progress in Data Science Education: opportunities at universities 
• Confusion in a new-old field: lack of consensus academically in 

several aspects of data intensive computing from storage to 
algorithms, to processing and education 

• Progress in Data Intensive Programming Models 
• Progress in Academic (open source) clouds 
• Progress in scalable robust Algorithms: new data need better 

algorithms? 
• FutureGrid: Develop Experimental Systems 
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Economic Imperative 
First Data 

There are a lot of data and a lot of jobs 
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Some Trends 
The Data Deluge is clear trend from Commercial (Amazon, e-
commerce) , Community (Facebook, Search) and Scientific 
applications 
Light weight clients from smartphones, tablets to sensors 
Multicore reawakening parallel computing 

Compelling server side 

Exascale initiatives will continue drive to high end with a 
simulation orientation 
Clouds with cheaper, greener, easier to use IT for (some) 
applications 
New jobs associated with new curricula 

Clouds as (part of) a distributed system (classic CS courses) 
Data Analytics (Important theme in academia and industry) 
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Some Data sizes 
~40 109 Web pages at ~300 kilobytes each = 10 Petabytes 
Youtube 48 hours video uploaded per minute;  

in 2 months in 2010, uploaded  more than total NBC ABC CBS 
~2.5 petabytes per year uploaded? 

LHC 15 petabytes per year 
Radiology 69 petabytes per year 
Earth Observation becoming ~4 petabytes per year 
Earthquake Science – few terabytes total today 
PolarGrid – 100’s terabytes/year 
Exascale simulation data dumps – terabytes/second = 30 
exabytes/year 
Square Kilometer Array Telescope will be 100 
terabits/second = 400 exabytes/year 
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MM = Million 
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Why need cost effective  
Computing! 
Full Personal Genomics: 3 
petabytes per day 

http://www.genome.gov/sequencingcosts/ 
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The Long Tail of Science 

80-20 rule: 20% users generate 80% data but not necessarily 80% knowledge 

Collectively “long tail” science is generating a lot of data 
Estimated at over 1PB per year and it is growing fast. 

From Dennis Gannon Talk 
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Economic Imperative 
Now Jobs 

There are a lot of data and a lot of jobs 
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Jobs v. Countries 
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McKinsey Institute on Big Data Jobs 

• There will be a shortage of talent necessary for organizations to take 
advantage of big data. By 2018, the United States alone could face a 
shortage of 140,000 to 190,000 people with deep analytical skills as well as 
1.5 million managers and analysts with the know-how to use the analysis of 
big data to make effective decisions. 

• Informatics aimed at 1.5 million jobs. Computer Science covers the 140,000 
to 190,000 
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Computing Model 

Industry adopted clouds which are 
attractive for data analytics 
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5 years Cloud Computing 
2 years Big Data Transformational 
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Amazon making money 

• It took Amazon Web Services (AWS) eight 
years to hit $650 million in revenue, according 
to Citigroup in 2010.  

• Just three years later, Macquarie Capital 
analyst Ben Schachter estimates that AWS will 
top $3.8 billion in 2013 revenue, up from $2.1 
billion in 2012 (estimated), valuing the AWS 
business at $19 billion.   
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Physically Clouds are Clear 
• A bunch of computers in an efficient data center 

with an excellent Internet connection 
• They were produced to meet need of public-

facing Web 2.0 e-Commerce/Social Networking 
sites 

• They can be considered as “optimal giant data 
center” plus internet connection 

• Note enterprises use private clouds that are 
giant data centers but not optimized for Internet 
access 
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Virtualization made several things more 
convenient 

• Virtualization = abstraction; run a job – you know not 
where 

• Virtualization = use hypervisor to support “images” 
– Allows you to define complete job as an “image” – OS + 

application 
• Efficient packing of multiple applications into one 

server as they don’t interfere (much) with each other 
if in different virtual machines; 

•  They interfere if put as two jobs in same machine as 
for example must have same OS and same OS 
services 

• Also security model between VM’s more robust than 
between processes 
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Clouds Offer From different points of view 
 • Features from NIST:  

– On-demand service (elastic);  
– Broad network access;  
– Resource pooling;  
– Flexible resource allocation;  
– Measured service 

• Economies of scale in performance and electrical power (Green IT) 
• Powerful new software models  

– Platform as a Service is not an alternative to Infrastructure as a 
Service – it is instead an incredible valued added 

– Amazon is as much PaaS as Azure  
• They are cheaper than classic clusters unless latter 100% utilized  
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Research Model 

4th Paradigm; From Theory to Data 
driven science? 
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http://www.wired.com/wired/issue/16-07                                   September 2008 
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The 4 paradigms of Scientific Research 
1. Theory 
2. Experiment or Observation 

• E.g. Newton observed apples falling to design his theory of 
mechanics 

3. Simulation of theory or model (computational Science) 
4. Data-driven (Big Data) or The Fourth Paradigm: Data-

Intensive Scientific Discovery (aka Data Science) 
• http://research.microsoft.com/en-

us/collaboration/fourthparadigm/  A free book 
• More data; less models 

• Note Data  Information Wisdom Knowledge 
Decisions pipeline 
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Anand Rajaraman is Senior Vice President at Walmart Global 
eCommerce, where he heads up the newly created 
@WalmartLabs,  

More data usually beats better algorithms 
Here's how the competition works. Netflix has provided a large 
data set that tells you how nearly half a million people have rated 
about 18,000 movies. Based on these ratings, you are asked to 
predict the ratings of these users for movies in the set that they 
have not rated. The first team to beat the accuracy of Netflix's 
proprietary algorithm by a certain margin wins a prize of $1 
million! 
Different student teams in my class adopted different approaches 
to the problem, using both published algorithms and novel ideas. 
Of these, the results from two of the teams illustrate a broader 
point. Team A came up with a very sophisticated algorithm using 
the Netflix data. Team B used a very simple algorithm, but they 
added in additional data beyond the Netflix set: information 
about movie genres from the Internet Movie Database(IMDB). 
Guess which team did better? 

http://anand.typepad.com/datawocky/2008/03/more-data-
usual.html 

20120117berkeley1.pdf Jeff Hammerbacher 
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Data Science Education 

Opportunities at universities 
see recent New York Times articles 

http://datascience101.wordpress.com/2013/04/13/new-york-times-data-science-articles/ 
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Data Science Education 
• Broad Range of Topics from Policy to curation to 

applications and algorithms, programming models, 
data systems, statistics, and broad range of CS 
subjects such as Clouds, Programming, HCI, 

• Plenty of Jobs and broader range of possibilities 
than computational science but similar cosmic 
issues 
– What type of degree (Certificate, minor, track, “real” 

degree) 
– What implementation (department, interdisciplinary 

group supporting education and research program) 
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Computational Science 
• Interdisciplinary field between computer science 

and applications with primary focus on simulation 
areas 

• Very successful as a research area 
– XSEDE and Exascale systems enable 

• Several academic programs but these have been 
less successful than computational science research 
as 
– No consensus as to curricula and jobs (don’t appoint 

faculty in computational science; do appoint to DoE labs) 
– Field relatively small  

• Started around 1990 
29 

https://portal.futuregrid.org/


https://portal.futuregrid.org  

MOOC’s 
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Massive Open Online Courses (MOOC) 
• MOOC’s are very “hot” these days with Udacity and Coursera as 

start-ups 
• Over 100,000 participants but concept valid at smaller sizes 
• Relevant to Data Science as this is a new field with few courses 

at most universities 
• Technology to make MOOC’s: Google Open Source Course 

Builder is lightweight LMS (learning management system) 
• Supports MOOC model as a collection of short prerecorded 

segments (talking head over PowerPoint) termed lessons – 
typically 15 minutes long 

• Compose playlists of lessons into sessions, modules, courses 
– Session is an “Album” and lessons are “songs” in an iTunes 

analogy 
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MOOC’s for Traditional Lectures 
• We can take MOOC lessons and view 

them as a “learning object” that we can 
share between different teachers 

32 

• i.e. as a way of teaching 
typical sized classes but 
with less effort as shared 
material 

• Start with what’s in 
repository; 

• pick and choose; 
• Add custom material of 

individual teachers 
• The ~15 minute Video over 

PowerPoint of MOOC’s 
much easier to re-use than 
PowerPoint 

• Do not need special 
mentoring support 

• Defining how to support 
computing labs with 
FutureGrid or appliances + 
Virtual Box 
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Confusion in the new-old data field 

lack of consensus academically in several aspects 
from storage to algorithms, to processing and 

education 
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Data Communities Confused I? 
• Industry seems to know what it is doing although it’s secretive – 

Amazon’s last paper on their recommender system was 2003 
– Industry runs the largest data analytics on clouds 
– But industry algorithms are rather different from science 

• Academia confused on repository model: traditionally one stores 
data but one needs to support “running Data Analytics” and one is 
taught to bring computing to data as in Google/Hadoop file system 
– Either store data in compute cloud OR enable high performance networking 

between distributed data repositories and “analytics engines” 

• Academia confused on data storage model: Files (traditional) v. 
Database (old industry) v. NOSQL (new cloud industry) 
– Hbase MongoDB Riak Cassandra are typical NOSQL systems 

• Academia confused on curation of data: University Libraries, 
Projects, National repositories, Amazon/Google? 
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Data Communities Confused II? 
• Academia agrees on principles of Simulation Exascale Architecture: 

HPC Cluster with accelerator plus parallel wide area file system 
– Industry doesn’t make extensive use of high end simulation 

• Academia confused on architecture for data analysis: Grid (as in 
LHC), Public Cloud, Private Cloud, re-use simulation architecture with 
database, object store, parallel file system, HDFS style data  

• Academia has not agreed on Programming/Execution model: “Data 
Grid Software”, MPI, MapReduce .. 

• Academia has not agreed on need for new algorithms: Use natural 
extension of old algorithms, R or Matlab. Simulation successes  built 
on great algorithm libraries;  

• Academia has not agreed on what algorithms are important? 
• Academia could attract more students: with data-oriented curricula 

that prepare for industry or research careers (as discussed) 
 35 
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Clouds in Research 
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Clouds have highlighted SaaS PaaS IaaS  

• Software Services are 
building blocks of 
applications 
 

• The middleware or 
computing environment 
including HPC, Grids … 
 

• Nimbus, Eucalyptus, 
OpenStack, OpenNebula 
CloudStack plus Bare-metal 

• OpenFlow – likely to grow in 
importance  

Infra 
structure 

IaaS 

 Software Defined 
Computing (virtual Clusters) 

 Hypervisor, Bare Metal 
 Operating System 

Platform 

PaaS 

 Cloud e.g. MapReduce 
 HPC e.g. PETSc, SAGA 
 Computer Science e.g. 

Compiler tools, Sensor 
nets, Monitors 

Network 

NaaS 
 Software Defined 

Networks 
 OpenFlow GENI 

Software 
(Application 
Or  Usage) 

SaaS 

 Education 
 Applications 
 CS Research Use e.g. 

test new compiler or 
storage model 
 

But equally valid for classic clusters 
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Science Computing Environments 
• Large Scale Supercomputers – Multicore nodes linked by high 

performance low latency network 
– Increasingly with GPU enhancement 
– Suitable for highly parallel simulations 

• High Throughput Systems such as European Grid Initiative EGI or 
Open Science Grid OSG typically aimed at pleasingly parallel jobs 
– Can use “cycle stealing” 
– Classic example is LHC data analysis  

• Grids federate resources as in EGI/OSG or enable convenient access 
to multiple backend systems including supercomputers 

• Use Services (SaaS) 
– Portals make access convenient and  
– Workflow integrates multiple processes into a single job 

38 
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Clouds HPC and Grids 
• Synchronization/communication Performance 

Grids > Clouds > Classic HPC Systems 
• Clouds naturally execute effectively Grid workloads but are less 

clear for closely coupled HPC applications 
• Classic HPC machines as MPI engines offer highest possible 

performance on closely coupled problems 
• The 4 forms of MapReduce/MPI  

1) Map Only – pleasingly parallel 
2) Classic MapReduce as in Hadoop; single Map followed by reduction with 

fault tolerant use of disk 
3) Iterative MapReduce use for data mining such as Expectation Maximization 

in clustering etc.; Cache data in memory between iterations and support the 
large collective communication (Reduce, Scatter, Gather, Multicast) use in 
data mining 

4) Classic MPI! Support small point to point messaging efficiently as used in 
partial differential equation solvers 
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What Applications work in Clouds 
• Pleasingly  (moving to modestly) parallel applications of all sorts 

(over users or usages) with roughly independent data or spawning 
independent simulations 
– Long tail of science and integration of distributed sensors 

• Commercial and Science Data analytics that can use MapReduce 
(some of such apps) or its iterative variants (most other data 
analytics apps) 

• Which science applications are using clouds?  
– Venus-C (Azure in Europe): 27 applications not using Scheduler, 

Workflow or MapReduce (except roll your own) 
– 50% of applications on FutureGrid are from Life Science  
– Locally Lilly corporation is commercial cloud user (for drug 

discovery) but not IU Biology 
• But overall very little science use of clouds 
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Internet of Things and the Cloud  
• It is projected that there will be 24 billion devices on the Internet by 

2020.  Most will be small sensors that send streams of information 
into the cloud where it will be processed and integrated with other 
streams and turned into knowledge that will help our lives in a 
multitude of small and big ways.   

• The cloud will become increasing important as a controller of and 
resource provider for the Internet of Things.  

• As well as today’s use for smart phone and gaming console support, 
“Intelligent River” “smart homes and grid” and “ubiquitous cities” 
build on this vision and we could expect a growth in cloud 
supported/controlled robotics. 

• Some of these “things” will be supporting science 
• Natural parallelism over “things” 
• “Things” are distributed and so form a Grid 
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Sensors (Things) as a Service 

Sensors as a Service 

Sensor 
Processing as 

a Service 
(could use 

MapReduce) 

A larger sensor ……… 

Output Sensor 

https://sites.google.com/site/opensourceiotcloud/ Open Source Sensor (IoT) Cloud 
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Data Intensive Programming Models 
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Map Collective Model (Judy Qiu) 
• Combine MPI and MapReduce ideas 
• Implement collectives optimally on Infiniband, 

Azure, Amazon …… 

44 

Input 

map 

Generalized Reduce 

Initial Collective Step 

Final Collective Step 

Iterate 
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Twister Iterative MapReduce  
for Data Intensive Applications 

• (Iterative) MapReduce structure with Map-Collective is 
framework 

• Twister runs on Linux or Azure 
• Twister4Azure is built on top of Azure tables, queues, 

storage 

Compute Communication Reduce/ barrier 

New Iteration 

Larger Loop-
Invariant Data 

Generalize to 
arbitrary 
Collective  

Broadcast 

Smaller Loop-
Variant Data 

Qiu, Gunarathne  
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Hadoop adjusted for Azure: Hadoop KMeans run time adjusted for the performance  
difference of iDataplex vs Azure 
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T4A + AllReduce

Hadoop Adjusted for Azure
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FutureGrid Technology 
addressing 

Poor Cloud Performance? 

47 
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FutureGrid Testbed as a Service 
• FutureGrid is part of XSEDE set up as a testbed with cloud focus 
• Operational since Summer 2010 (i.e. now in third year of use) 
• The FutureGrid testbed provides to its users: 

– Support of Computer Science and Computational Science research  
– A flexible development and testing platform for middleware and 

application users looking at interoperability, functionality, 
performance or evaluation 

– FutureGrid is user-customizable, accessed interactively and 
supports Grid, Cloud and HPC software with and without VM’s 

– A rich education and teaching platform for classes 
• Offers OpenStack, Eucalyptus, Nimbus, OpenNebula, HPC (MPI) on 

same hardware moving to software defined systems; supports both 
classic HPC and Cloud storage 
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4 Use Types for FutureGrid TestbedaaS 
• 292 approved projects (1734 users) April 6 2013 

– USA(79%), Puerto Rico(3%- Students in class), India, China, lots of 
European countries (Italy at 2% as class) 

– Industry, Government, Academia 
• Computer science and Middleware (55.6%) 

– Core CS and Cyberinfrastructure; Interoperability (3.6%) for Grids 
and Clouds such as Open Grid Forum OGF Standards 

• New Domain Science applications (20.4%) 
– Life science highlighted (10.5%), Non Life Science (9.9%) 

• Training Education and Outreach (14.9%) 
– Long (27 full semester) and short events 

• Computer Systems Evaluation (9.1%) 
– XSEDE (TIS, TAS), OSG, EGI; Campuses 
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Sample FutureGrid Projects I 
• FG18 Privacy preserving gene read mapping developed hybrid 

MapReduce. Small private secure + large public with safe data. Won  
2011 PET Award for Outstanding Research in Privacy Enhancing 
Technologies 

• FG132, Power Grid Sensor analytics on the cloud with distributed 
Hadoop. Won the IEEE Scaling challenge at CCGrid2012.  

• FG156 Integrated System for End-to-end High Performance Networking 
showed that the RDMA over Converged Ethernet (InfiniBand made to 
work over Ethernet network frames) protocol could be used over wide-
area networks, making it viable in cloud computing environments.  

• FG172 Cloud-TM on distributed concurrency control (software 
transactional memory): "When Scalability Meets Consistency: Genuine 
Multiversion Update Serializable Partial Data Replication,“ 32nd 
International Conference on Distributed Computing Systems (ICDCS'12) 
(good conference) used 40 nodes of FutureGrid 
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Sample FutureGrid Projects II 
• FG42,45 SAGA Pilot Job P* abstraction and applications. XSEDE 

Cyberinfrastructure used on clouds 
• FG130 Optimizing Scientific Workflows on Clouds. Scheduling Pegasus 

on distributed systems with overhead measured and reduced. Used 
Eucalyptus on FutureGrid 

• FG133 Supply Chain Network Simulator Using Cloud Computing with 
dynamic virtual machines supporting Monte Carlo simulation with 
Grid Appliance and Nimbus 

• FG257 Particle Physics Data analysis for ATLAS LHC experiment used 
FutureGrid + Canadian Cloud resources to study data analysis on 
Nimbus + OpenStack with up to 600 simultaneous jobs 

• FG254 Information Diffusion in Online Social Networks is evaluating 
NoSQL databases (Hbase, MongoDB, Riak) to support analysis of 
Twitter feeds 

• FG323 SSD performance benchmarking for HDFS on Lima 
51 
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Education and Training Use of FutureGrid 
• 27 Semester long classes:  563+ students 

– Cloud Computing, Distributed Systems, Scientific Computing and Data Analytics 

• 3 one week summer schools:  390+ students 
– Big Data, Cloudy View of Computing (for HBCU’s), Science Clouds 

• 1 two day workshop:  28 students 
• 5 one day tutorials:  173 students 
• From 19 Institutions 
• Developing 2 MOOC’s (Google Course Builder) on Cloud Computing 

and use of FutureGrid supported by either FutureGrid or 
downloadable appliances (custom images) 
– See http://cgltestcloud1.appspot.com/preview 

• FutureGrid appliances support Condor/MPI/Hadoop/Iterative 
MapReduce virtual clusters 
 52 
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Clouds have highlighted SaaS PaaS IaaS  

• Software Services are 
building blocks of 
applications 
 

• The middleware or 
computing environment 
including HPC, Grids … 
 

• Nimbus, Eucalyptus, 
OpenStack, OpenNebula 
CloudStack plus Bare-metal 

• OpenFlow – likely to grow in 
importance  

Infra 
structure 

IaaS 

 Software Defined 
Computing (virtual Clusters) 

 Hypervisor, Bare Metal 
 Operating System 

Platform 

PaaS 

 Cloud e.g. MapReduce 
 HPC e.g. PETSc, SAGA 
 Computer Science e.g. 

Compiler tools, Sensor 
nets, Monitors 

Network 

NaaS 
 Software Defined 

Networks 
 OpenFlow GENI 

Software 
(Application 
Or  Usage) 

SaaS 

 Education 
 Applications 
 CS Research Use e.g. 

test new compiler or 
storage model 
 

But equally valid for classic clusters 
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Performance of Dynamic Provisioning 
• 4 Phases a) Design and create image (security vet) b) Store in 

repository as template with components c) Register Image to VM 
Manager (cached ahead of time) d) Instantiate (Provision) image 
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Direct GPU Virtualization 

• Allow VMs to directly access GPU hardware 
• Enables CUDA and OpenCL code – no need for 

custom APIs 
• Utilizes PCI-passthrough of device to guest VM  

– Hardware directed I/O virt (VT-d or IOMMU) 
– Provides direct isolation and security of device 

from host or other VMs 
– Removes much of the Host <-> VM overhead 

• Similar to what Amazon EC2 uses (proprietary) 
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Performance 1 
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Performance 2 
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Algorithms 

Scalable Robust Algorithms: new 
data need better algorithms? 
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Algorithms for Data Analytics 
• In simulation area, it is observed that equal contributions 

to improved performance come from increased computer 
power and better algorithms 
http://cra.org/ccc/docs/nitrdsymposium/pdfs/keyes.pdf   

• In data intensive area, we haven’t seen this effect so 
clearly 
– Information retrieval revolutionized but 
– Still using Blast in Bioinformatics (although Smith Waterman etc. 

better) 
– Still using R library which has many non optimal algorithms 
– Parallelism and use of GPU’s often ignored 
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Data Analytics Futures? 
• PETSc and ScaLAPACK and similar libraries very important in 

supporting parallel simulations 
• Need equivalent Data Analytics libraries 
• Include datamining (Clustering, SVM, HMM, Bayesian Nets …), image 

processing, information retrieval including hidden factor analysis 
(LDA), global inference, dimension reduction 
– Many libraries/toolkits (R, Matlab) and web sites (BLAST) but typically not 

aimed at scalable high performance algorithms 

• Should support clouds and HPC; MPI and MapReduce 
– Iterative MapReduce an interesting runtime; Hadoop has many limitations 

• Need a coordinated Academic Business Government Collaboration 
to build robust algorithms that scale well 
– Crosses Science, Business Network Science, Social Science 

• Propose to build community to define & implement 
SPIDAL or Scalable Parallel Interoperable  Data Analytics Library 
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Conclusions 
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Conclusions 
• Clouds and HPC are here to stay and one should plan on using both 
• Data Intensive programs are not like simulations as they have large 

“reductions” (“collectives”) and do not have many small messages 
– Clouds suitable 

• Iterative MapReduce an interesting approach; need to optimize 
collectives for new applications (Data analytics) and resources 
(clouds, GPU’s …) 

• Need an initiative to build scalable high performance data analytics 
library on top of interoperable cloud-HPC platform 

• Many promising data analytics algorithms such as deterministic 
annealing not used as implementations not available in R/Matlab etc. 
– More sophisticated software and runs longer but can be 

efficiently parallelized so runtime not a big issue 
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Conclusions II 
• Software defined computing systems linking NaaS, IaaS, 

PaaS, SaaS (Network, Infrastructure, Platform, Software) likely 
to be important 

• More employment opportunities in clouds than HPC and 
Grids and in data than simulation; so cloud and data related 
activities popular with students 

• Community activity to discuss data science education 
– Agree on curricula; is such a degree attractive? 

• Role of MOOC’s as either 
– Disseminating new curricula  
– Managing course fragments that can be assembled into 

custom courses for particular interdisciplinary students 
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