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Abstract

We explore the principle that much of “the future” will be characterized by “Using
Clouds running Data Analytics processing Big Data to solve problems in X-
Informatics”. Applications (values of X) include explicitly already Astronomy,
Biology, Biomedicine, Business, Chemistry, Crisis, Energy, Environment, Finance,
Health, Intelligence, Lifestyle, Marketing, Medicine, Pathology, Policy, Radar,
Security, Sensor, Social, Sustainability, Wealth and Wellness with more fields
defined implicitly. We discuss the implications of this concept for education and
research. Education requires new curricula — generically called data science — which
will be hugely popular due to the many millions of jobs opening up in both “core
technology” and within applications where of course there are most opportunities.
We discuss possibility of using MOOC's to jumpstart field. On research side, big
data (i.e. large applications) require big (i.e. scalable) algorithms on big
infrastructure running robust convenient programming environments. We discuss
clustering and information visualization using dimension reduction as examples of
scalable algorithms. We compare Message Passing Interface MPI and extensions of
MapReduce as the core technology to execute data analytics.

We mention FutureGrid and a software defined Computing Testbed as a Service
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Big Data Ecosystem in One
Sentence

Clouds Data Analytics Big Data
X-Informatics ( or e-X)

X = Astronomy, Biology, Biomedicine, Business, Chemistry, Crisis, Energy,
Environment, Finance, Health, Intelligence, Lifestyle, Marketing, Medicine,
Pathology, Policy, Radar, Security, Sensor, Social, Sustainability, Wealth and

Wellness with more fields (physics) defined implicitly

Spans Industry (AHEAD?) and Science (research)

Education: Data Science see recent New York Times articles

http://datasciencel01.wordpress.com/2013/04/13/new-york-times-data-
science-articles/
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Issues of Importance

Economic Imperative: There are a lot of data and a lot of jobs

Computing Model: Industry adopted clouds which are attractive for
data analytics. Research has not adopted?

Research Model: 4t" Paradigm; From Theory to Data driven science?
Progress in Data Science Education: opportunities at universities

Confusion in a new-old field: lack of consensus academically in
several aspects of data intensive computing from storage to
algorithms, to processing and education

Progress in Data Intensive Programming Models
Progress in Academic (open source) clouds

Progress in scalable robust Algorithms: new data need better
algorithms?

FutureGrid: Develop Experimental Systems
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Economic Imperative
First Data

There are a lot of data and a lot of jobs

‘. Future
:h\ Grid https://portal.futuregrid.org 6
Eme—

-



https://portal.futuregrid.org/

Some Trends

% The Data Deluge is clear trend from Commercial (Amazon, e-
commerce) , Community (Facebook, Search) and Scientific
applications

% Light weight clients from smartphones, tablets to sensors
% Multicore reawakening parallel computing
% Compelling server side

% Exascale initiatives will continue drive to high end with a
simulation orientation

% Clouds with cheaper, greener, easier to use IT for (some)
applications

% New jobs associated with new curricula
% Clouds as (part of) a distributed system (classic CS courses)
% Data Analytics (Important theme in academia and industry)

\ Future
:’;;‘ Grid https://portal.futuregrid.org

- -
-



https://portal.futuregrid.org/

Some Data sizes
% ~40 10% Web pages at ~300 kilobytes each = 10 Petabytes

% Youtube 48 hours video uploaded per minute;
% In 2 months in 2010, uploaded more than total NBC ABC CBS
y ~2.5 petabytes per year uploaded?

% LHC 15 petabytes per year

% Radiology 69 petabytes per year

% Earth Observation becoming ~4 petabytes per year

% Earthquake Science — few terabytes total today

% PolarGrid — 100’s terabytes/year

% Exascale simulation data dumps — terabytes/second = 30
exabytes/year

% Square Kilometer Array Telescope will be 100
terabits/second = 400 exabytes/year
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Cost per Genome

$100M (e

$10M

$1M

$100K

$10K

$1K

Moore's Law

Why need cost effective
Computing!

Full Personal Genomics: 3
petabytes per day

Il Il National Human ‘
||||| mm““ ||||| Genome Research
Institute

genome.gov/sequencingcosts
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http://www.genome.gov/sequencingcosts/



https://portal.futuregrid.org/

. A S 8 & &= = & R T T W, Y

The Long Tail of Science

High energy physics, astronomy

genomics

Collectively “long tail” science is generating a lot of data
Estimated at over 1PB per year and it is growing fast.

80-20 rule: 20% users generate 80% data but not necessarily 80% knowledge

s Future
Grid https://portal.futuregrid.org

From Dennis Gannon Talk -.:--

The long tail: economics, social science, ...
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Economic Imperative
Now Jobs

There are a lot of data and a lot of jobs
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Jobs v. Countries

china 4,631,956
0.57

india 2,120,134

0.41

United States 1,099,800
i 0.70

Indonesia 915,848
0.74

M““Mﬂs FH 189,196 Egypt . 112,586 Ghika I 32,545
- 0.38 0.38
sapan J 262,717 Russiam 162,420 Malaysia . 100,603 loroid ! 31,243
i 0.80

Germa*54'562 Italy 152,136 Argontina 89,104 ponandlz!ﬂ 29,261
el e e |
iy i s —— el .
Korea 200'498 Australia 125’579 Netherlands 40,741 Denmark 12'185

o.ae + ¢ _EL'-

Cloud jobs worldwide in Millions
Cloud-enabled jobs by 2015 .

2012 6.7 I
% of cloud-enabled jobs in relation to total labor force -

2013 8.8 I
2014  11.3 I
2015 13.8 I

http://www.microsoft.com/en-us/%??&/jeatures/2012/mar12/03-05CIoudComputingJobs.aspx
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McKinsey Institute on Big Data Jobs

140-190 440-490
—

50-60% gap
relative to
150 2018 supply
2008 Graduates Others? 2018 supply  Talent gap 2018 projected
employment  with deep demand

analytical
talent

There will be a shortage of talent necessary for organizations to take
advantage of big data. By 2018, the United States alone could face a
shortage of 140,000 to 190,000 people with deep analytical skills as well as

1.5 million managers and analysts with the know-how to use the analysis of
big data to make effective decisions.

Informatics aimed at 1.5 million jobs. Computer Science covers the 140,000
to 190,000 http://www.mckinsey.com/mgi/publications/big_data/index.asp.

W Future
:‘;;‘ Grid https://portal.futuregrid.org 15

- -
-



https://portal.futuregrid.org/

The Rise of Data Scientists and Analysts

=
-

Analytics and Data Science Job Growth

o o o o o o = o
5 g g (] & 2 & 2

Anaytics and Data Science Job Starters [as a percentage of all job starters)
o
(=

analytics
0

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Tom Davenport Harvard Business School
http://fisheritcenter.haas.berkeley.edu/Big_Data/index.html Nov 2012
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Computing Model

Industry adopted clouds which are
attractive for data analytics
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5 years Cloud Computing o .
2 years Big Data Transformational Gartner. Priority Matrix

years to mainstream adoption

benefit less than 2 years 2 to 5years 5to 10 years more than 10 years
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Amazon making money

e |t took Amazon Web Services (AWS) eight

years to hit S650 million in revenue, according
to Citigroup in 2010.

e Just three years later, Macquarie Capital
analyst Ben Schachter estimates that AWS wiill
top $3.8 billion in 2013 revenue, up from $2.1

billion in 2012 (estimated), valuing the AWS
business at $19 billion.
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Physically Clouds are Clear

A bunch of computers in an efficient data center
with an excellent Internet connection

They were produced to meet need of public-
facing Web 2.0 e-Commerce/Social Networking
sites

They can be considered as “optimal giant data
center” plus internet connection

Note enterprises use private clouds that are
giant data centers but not optimized for Internet
access
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Virtualization made several things more

convenient

Virtualization = abstraction; run a job — you know not
where

Virtualization = use hypervisor to support “images”

— Allows you to define complete job as an “image” — OS +
application

Efficient packing of multiple applications into one

server as they don’t interfere (much) with each other

if in different virtual machines;

They interfere if put as two jobs in same machine as
for example must have same OS and same OS
services

Also security model between VM’s more robust than
between processes
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Clouds Offer From different points of view

e Features from NIST:
— On-demand service (elastic);
— Broad network access;
— Resource pooling;
— Flexible resource allocation;
— Measured service

 Economies of scale in performance and electrical power (Green IT)
e Powerful new software models

— Platform as a Service is not an alternative to Infrastructure as a
Service — it is instead an incredible valued added

— Amazon is as much PaaS as Azure
 They are cheaper than classic clusters unless latter 100% utilized
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Research Model

4t Paradigm; From Theory to Data
driven science?

23
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http://www.wired.com/wired/issue/16-07 X September 2008

of Science g |

The quest for

knowledge used B
to begin with N
grand theories. A Rp—

Now it begins
with massive
amounts of data.
Welcome to the
Petabyte Age.
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The 4 paradigms of Scientific Research

1. Theory

2. Experiment or Observation

e E.g. Newton observed apples falling to design his theory of
mechanics

3. Simulation of theory or model (computational Science)
4. Data-driven (Big Data) or The Fourth Paradigm: Data-
Intensive Scientific Discovery (aka Data Science)

e http://research.microsoft.com/en-
us/collaboration/fourthparadigm/ A free book

e More data; less models

e Note Data =2 Information=> Wisdom = Knowledge—>
Decisions pipeline
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More data usually beats better algorithms

B Here's how the competition works. Netflix has provided a large

| data set that tells you how nearly half a million people have rated

about 18,000 movies. Based on these ratings, you are asked to

predict the ratings of these users for movies in the set that they

| have not rated. The first team to beat the accuracy of Netflix's

proprietary algorithm by a certain margin wins a prize of $1

e million!

J Different student teams in my class adopted different approaches

. to the problem, using both published algorithms and novel ideas.
5‘ Of these, the results from two of the teams illustrate a broader

. point. Team A came up with a very sophisticated algorithm using

§ the Netflix data. Team B used a very simple algorithm, but they

added in additional data beyond the Netflix set: information

about movie genres from the Internet Movie Database(IMDB).

Guess which team did better?

Anand Rajaraman is Senior Vice President at Walmart Global
eCommerce, where he heads up the newly created

@WalmartLabs,
http://anand.typepad.com/datawocky/2008/03/more-data-
usual Afnd
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Data Science Education

Opportunities at universities
see recent New York Times articles

http://datascience101.wordpress.com/2013/04/13/new-york-times-data-science-articles/
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Data Science Education

 Broad Range of Topics from Policy to curation to
applications and algorithms, programming models,
data systems, statistics, and broad range of CS
subjects such as Clouds, Programming, HCI,

* Plenty of Jobs and broader range of possibilities
than computational science but similar cosmic
Issues

— What type of degree (Certificate, minor, track, “rea
degree)

III

— What implementation (department, interdisciplinary
group supporting education and research program)
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Computational Science
Interdisciplinary field between computer science

and applications with primary focus on simulation
areas

Very successful as a research area
— XSEDE and Exascale systems enable

Several academic programs but these have been
less successful than computational science research

dS

— No consensus as to curricula and jobs (don’t appoint
faculty in computational science; do appoint to DoE labs)

— Field relatively small
Started around 1990
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Massive Open Online Courses (MOOC)

e MOOC’s are very “hot” these days with Udacity and Coursera as
start-ups

e QOver 100,000 participants but concept valid at smaller sizes

e Relevant to Data Science as this is a new field with few courses
at most universities

e Technology to make MOOC’s: Google Open Source Course
Builder is lightweight LMS (learning management system)

e Supports MOOC model as a collection of short prerecorded
segments (talking head over PowerPoint) termed lessons —
typically 15 minutes long

e Compose playlists of lessons into sessions, modules, courses

— Session is an “Album” and lessons are “songs” in an iTunes
analogy oo

w0\ Grid https://portal.futuregrid.org
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MOOC’S for Tradltlonal Lectures

We can take MOOC lessons and view
them as a “learning object” that we can
share between different teachers

gcfexchange@gmail.com | Logout Dashboard Admin

X-Informatics Introduction:
What is
Big Data, Data Analytics
and X-Informatics? Part |

gcf@indiana.edu
http://www.infomall.org/X-InformaticsSpring2013/index.htm|

multiple areas indicated by the term "X:-Informatics'.

Previous Page Next Page

0 comments 0

i.e. as a way of teaching
typical sized classes but
with less effort as shared
material

Start with what’s in
repository;

pick and choose;

Add custom material of
individual teachers

The ~15 minute Video over
PowerPoint of MOOC'’s
much easier to re-use than
PowerPoint

Do not need special
mentoring support
Defining how to support
computing labs with
FutureGrid or appliances +
Virtual Box 32
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Confusion in the new-old data field

lack of consensus academically in several aspects
from storage to algorithms, to processing and
education
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Data Communities Confused I?

Industry seems to know what it is doing although it’s secretive —
Amazon’s last paper on their recommender system was 2003

— Industry runs the largest data analytics on clouds

— But industry algorithms are rather different from science

Academia confused on repository model: traditionally one stores
data but one needs to support “ Data Analytics” and one is
taught to bring computing to data as in Google/Hadoop file system
— Either store data in compute cloud OR enable high performance networking
between distributed data repositories and “analytics engines”
Academia confused on data storage model: Files (traditional) v.
Database (old industry) v. NOSQL (new cloud industry)
— Hbase MongoDB Riak Cassandra are typical NOSQL systems

Academia confused on curation of data: University Libraries,
Projects, National repositories, Amazon/Google?
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Data Communities Confused II?

Academia agrees on principles of Simulation Exascale Architecture:
HPC Cluster with accelerator plus parallel wide area file system
— Industry doesn’t make extensive use of high end simulation

Academia confused on architecture for data analysis: Grid (as in
LHC), Public Cloud, Private Cloud, re-use simulation architecture with
database, object store, parallel file system, HDFS style data

Academia has not agreed on Programming/Execution model: “Data
Grid Software”, MPI, MapReduce ..

Academia has not agreed on need for new algorithms: Use natural
extension of old algorithms, R or Matlab. Simulation successes built
on great algorithm libraries;

Academia has not agreed on what algorithms are important?

Academia could attract more students: with data-oriented curricula
that prepare for industry or research careers (as discussed)
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Clouds in Research
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Clouds have highlighted SaaS PaaS laaS

p

Software » Education

(Application > Applications
Or Usage) > CSResearchUsee.g.

saas test new compiler or
N

N

/

storage model
4 >

Platform >

PaaS

nets, Monitors

Cloud e.g. MapReduc
HPC e.g. PETSc, SAGA
Computer Science e.g.
Compiler tools, Sensor

e

~

/

" Infra > Software Defined

» Hypervisor, Bare Metal
» Operating System

JaaS

structure Computing (virtual Clusters)

N

J

1 Network » Software Defined
Networks

\ NaaS > OpenFIov\: GENI

But equally valid for classic clusters

Software Services are
building blocks of
applications

The middleware or
computing environment
including HPC, Grids ...

Nimbus, Eucalyptus,
OpenStack, OpenNebula
CloudStack plus Bare-metal

OpenFlow — likely to grow in
iImportance

wy Grid https://portal.futuregrid.org
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Science Computing Environments

Large Scale Supercomputers — Multicore nodes linked by high
performance low latency network

— Increasingly with GPU enhancement
— Suitable for highly parallel simulations

High Throughput Systems such as European Grid Initiative EGI or
Open Science Grid OSG typically aimed at pleasingly parallel jobs

— Can use “cycle stealing”
— Classic example is LHC data analysis

Grids federate resources as in EGI/OSG or enable convenient access
to multiple backend systems including supercomputers

Use Services (Saa$S)
— Portals make access convenient and
— Workflow integrates multiple processes into a single job
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Clouds HPC and Grids

Synchronization/communication Performance
Grids > Clouds > Classic HPC Systems

Clouds naturally execute effectively Grid workloads but are less
clear for closely coupled HPC applications

Classic HPC machines as MPI engines offer highest possible
performance on closely coupled problems

The 4 forms of MapReduce/MPI

1) Map Only — pleasingly parallel
2) Classic MapReduce as in Hadoop; single Map followed by reduction with
fault tolerant use of disk

3) Iterative MapReduce use for data mining such as Expectation Maximization
in clustering etc.; Cache data in memory between iterations and support the
large collective communication (Reduce, Scatter, Gather, Multicast) use in
data mining

4) Classic MPI! Support small point to point messaging efficiently as used in
partial differential equation solvers
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What Applications work in Clouds

Pleasingly (moving to modestly) parallel applications of all sorts
(over users or usages) with roughly independent data or spawning
independent simulations

— Long tail of science and integration of distributed sensors
Commercial and Science Data analytics that can use MapReduce
(some of such apps) or its iterative variants (most other data
analytics apps)
Which science applications are using clouds?

— Venus-C (Azure in Europe): 27 applications not using Scheduler,
Workflow or MapReduce (except roll your own)

— 50% of applications on FutureGrid are from Life Science

— Locally Lilly corporation is commercial cloud user (for drug
discovery) but not IU Biology

But overall very little science use of clouds
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Internet of Things and the Cloud

It is projected that there will be 24 billion devices on the Internet by
2020. Most will be small sensors that send streams of information
into the cloud where it will be processed and integrated with other
streams and turned into knowledge that will help our lives in a
multitude of small and big ways.

The cloud will become increasing important as a controller of and
resource provider for the Internet of Things.

As well as today’s use for smart phone and gaming console support,
“Intelligent River” “smart homes and grid” and “ubiquitous cities”
build on this vision and we could expect a growth in cloud
supported/controlled robotics.

Some of these “things” will be supporting science
Natural parallelism over “things”
“Things” are distributed and so form a Grid
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Sensors (Thmgs) as a Service

Alpha Rex —

Output Sensor
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ensors as a Service I

sl m Sensor

' Processing as
a Service
(could use

MapReduce)
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https://sites.google.com/site/opensourceiotcloud/ Open Source Sensor (loT) Cloud
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Data Intensive Programming Models
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Map Collective Model (Judy Qiu)
e Combine MPI and MapReduce ideas

 Implement collectives optimally on Infiniband,
Azure, Amazon ......

Iterate

W Future . .
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Twister Iterative MapReduce Generalize to

arbitrary

for Data Intensive Applications Collective

Compute Communication Reduce/ barrier
Broadcast

New Iteration

Smaller Loop-

Variant Data

Larger Loop-
Invariant Data

e (lterative) MapReduce structure with Map-Collective is
framework

e Twister runs on Linux or Azure
 Twister4Azure is built on top of Azure tables, queues,
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. Kmeans

1200 ———
1000
= 800 —o—Twister4Azure
£
Q / —#-T4A+ tree broadcast
E 600 =
E-==!E EE —ad  =2=T4A + AllReduce
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Num cores x Num Data Points

Hadoop adjusted for Azure: Hadoop KMeans run time adjusted for the performance
difference of iDataplex vs Azure
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FutureGrid Technology
addressing
Poor Cloud Performance?
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FutureGrid Testbed as a Service
e FutureGrid is part of XSEDE set up as a testbed with cloud focus

e Operational since Summer 2010 (i.e. now in third year of use)
e The FutureGrid testbed provides to its users:
— Support of Computer Science and Computational Science research

— A flexible development and testing platform for middleware and
application users looking at interoperability, functionality,
performance or evaluation

— FutureGrid is user-customizable, accessed interactively and
supports Grid, Cloud and HPC software with and without VM’s

— Arich education and teaching platform for classes

e Offers OpenStack, Eucalyptus, Nimbus, OpenNebula, HPC (MPI) on
same hardware moving to software defined systems; supports both
classic HPC and Cloud storage
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4 Use Types for FutureGrid Testbedaa$S

e 292 approved projects (1734 users) April 6 2013
— USA(79%), Puerto Rico(3%- Students in class), India, China, lots of
European countries (Italy at 2% as class)
— Industry, Government, Academia
e Computer science and Middleware (55.6%)
— Core CS and Cyberinfrastructure; Interoperability (3.6%) for Grids
and Clouds such as Open Grid Forum OGF Standards

e New Domain Science applications (20.4%)

— Life science highlighted (10.5%), Non Life Science (9.9%)
* Training Education and Outreach (14.9%)

— Long (27 full semester) and short events
 Computer Systems Evaluation (9.1%)

— XSEDE (TIS, TAS), OSG, EGI; Campuses

\ Future
:*..;‘ Grid https://portal.futuregrid.org

-
-



https://portal.futuregrid.org/

Sample FutureGrid Projects |

FG18 Privacy preserving gene read mapping developed hybrid
MapReduce. Small private secure + large public with safe data. Won
2011 PET Award for Outstanding Research in Privacy Enhancing
Technologies

FG132, Power Grid Sensor analytics on the cloud with distributed
Hadoop. Won the IEEE Scaling challenge at CCGrid2012.

FG156 Integrated System for End-to-end High Performance Networking
showed that the RDMA over Converged Ethernet (InfiniBand made to
work over Ethernet network frames) protocol could be used over wide-
area networks, making it viable in cloud computing environments.

FG172 Cloud-TM on distributed concurrency control (software
transactional memory): "When Scalability Meets Consistency: Genuine
Multiversion Update Serializable Partial Data Replication,” 32nd
International Conference on Distributed Computing Systems (ICDCS'12)
(good conference) used 40 nodes of FutureGrid
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Sample FutureGrid Projects Il

FG42,45 SAGA Pilot Job P* abstraction and applications. XSEDE
Cyberinfrastructure used on clouds

FG130 Optimizing Scientific Workflows on Clouds. Scheduling Pegasus
on distributed systems with overhead measured and reduced. Used
Eucalyptus on FutureGrid

FG133 Supply Chain Network Simulator Using Cloud Computing with
dynamic virtual machines supporting Monte Carlo simulation with
Grid Appliance and Nimbus

FG257 Particle Physics Data analysis for ATLAS LHC experiment used
FutureGrid + Canadian Cloud resources to study data analysis on
Nimbus + OpenStack with up to 600 simultaneous jobs

FG254 Information Diffusion in Online Social Networks is evaluating
NoSQL databases (Hbase, MongoDB, Riak) to support analysis of
Twitter feeds

FG323 SSD performance benchmarking for HDFS on Lima
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Education and Training Use of FutureGrid

27 Semester long classes: 563+ students
— Cloud Computing, Distributed Systems, Scientific Computing and Data Analytics

3 one week summer schools: 390+ students
— Big Data, Cloudy View of Computing (for HBCU’s), Science Clouds

1 two day workshop: 28 students
5 one day tutorials: 173 students
From 19 Institutions

Developing 2 MOOC’s (Google Course Builder) on Cloud Computing
and use of FutureGrid supported by either FutureGrid or
downloadable appliances (custom images)

— See http://cgltestcloudl.appspot.com/preview

FutureGrid appliances support Condor/MPIl/Hadoop/Iterative
MapReduce virtual clusters
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Clouds have highlighted SaaS PaaS laaS

a

Software » Education

(Application > Applications
Or Usage) > CSResearch Usee.g.

saas test new compiler or
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/

storage model
4 >

Platform >

PaaS

nets, Monitors

Cloud e.g. MapReduc
HPC e.g. PETSc, SAGA
Computer Science e.g.
Compiler tools, Sensor
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" Infra > Software Defined

» Hypervisor, Bare Metal
» Operating System

JaaS

structure Computing (virtual Clusters)
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1 Network » Software Defined
Networks

\ NaaS > OpenFIov: GENI

But equally valid for classic clusters

Software Services are
building blocks of
applications

The middleware or
computing environment
including HPC, Grids ...

Nimbus, Eucalyptus,
OpenStack, OpenNebula
CloudStack plus Bare-metal

OpenFlow — likely to grow in
iImportance
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Performance of Dynamic Provisioning

* 4 Phases a) Design and create image (security vet) b) Store in
repository as template with components c) Register Image to VM
Manager (cached ahead of time) d) Instantiate (Provision) image

Provisioning from Registered Images Generate an Image
300 500 W Upload image to the
. repo
400 — W Compress image
250 - % 300 e  |nstall user packages
£
E 200 “ Install util packages
500 100 - & Create Base 05
0 - — . - Boot VM
- CentOS 5 Ubuntu 10.10
D 150
£ i OpenStack
= Generate Images
i xCAT/Moab
800
100
600 —
o E CentOS 5
£ 400
50 L & Ubuntu 10.10
200 T
O -
0 1 2 4
1 2 4 8 16 37 Number of Images Generated
Number of Machines atthe Same Time
'::\F Gpid https://portal.futuregrid.or
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Direct GPU Virtualization

e Allow VMs to directly access GPU hardware

* Enables CUDA and OpenCL code — no need for
custom APIs
e Utilizes PCl-passthrough of device to guest VM

— Hardware directed I/O virt (VT-d or IOMMU)

— Provides direct isolation and security of device
from host or other VMs

— Removes much of the Host <-> VM overhead
e Similar to what Amazon EC2 uses (proprietary)
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Performance 1
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Performance 2
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Scalable Robust Algorithms: new
data need better algorithms?
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Algorithms for Data Analytics
* |n simulation area, it is observed that equal contributions
to improved performance come from increased computer
power and better algorithms
http://cra.org/ccc/docs/nitrdsymposium/pdfs/keyes.pdf

* |n data intensive area, we haven’t seen this effect so
clearly
— Information retrieval revolutionized but

— Still using Blast in Bioinformatics (although Smith Waterman etc.
better)

— Still using R library which has many non optimal algorithms
— Parallelism and use of GPU’s often ignored
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“Moore’s Law” for fusion energy simulations
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Data Analytics Futures?

PETSc and ScaLAPACK and similar libraries very important in
supporting parallel simulations

Need equivalent Data Analytics libraries

Include datamining (Clustering, SVM, HMM, Bayesian Nets ...), image

processing, information retrieval including hidden factor analysis

(LDA), global inference, dimension reduction

— Many libraries/toolkits (R, Matlab) and web sites (BLAST) but typically not
aimed at scalable high performance algorithms

Should support clouds and HPC; MPI and MapReduce

— lterative MapReduce an interesting runtime; Hadoop has many limitations

Need a coordinated Academic Business Government Collaboration
to build robust algorithms that scale well
— Crosses Science, Business Network Science, Social Science

Propose to build community to define & implement
SPIDAL or Scalable Parallel Interoperable Data Analytics Library
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Conclusions

Clouds and HPC are here to stay and one should plan on using both

Data Intensive programs are not like simulations as they have large
“reductions” (“collectives”) and do not have many small messages

— Clouds suitable

Iterative MapReduce an interesting approach; need to optimize
collectives for new applications (Data analytics) and resources
(clouds, GPU’s ...)

Need an initiative to build scalable high performance data analytics
library on top of interoperable cloud-HPC platform

Many promising data analytics algorithms such as deterministic
annealing not used as implementations not available in R/Matlab etc.

— More sophisticated software and runs longer but can be
efficiently parallelized so runtime not a big issue
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Conclusions li

Software defined computing systems linking Naas, 1aas,
Paa$, SaaS (Network, Infrastructure, Platform, Software) likely
to be important

More employment opportunities in clouds than HPC and
Grids and in data than simulation; so cloud and data related
activities popular with students

Community activity to discuss data science education
— Agree on curricula; is such a degree attractive?
Role of MOOC's as either
— Disseminating new curricula
— Managing course fragments that can be assembled into
custom courses for particular interdisciplinary students
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