Scaling Properties of Traffic in Communication Networks

Probabilistic Resources Allocation in Cloud Environments

Paulo Gonçalves Inria (DANTE) - ENS Lyon

Shubhabrata Roy (PhD, 2010-2013) Thomas Begin (Ass. Prof., UCBL Lyon 1) Patrick Loiseau (Ass. Prof. EURECOM)

CLOSER 2014 – Barcelona (Spain) 3-5 April 2014

P. Gonçalves (Inria)

Scaling properties of traffic

Historical perspective

¹⁹¹⁷ Etans	North Switching Returned	1988 Lan Sacher Swiching Tamories 1992 Tim Bernes Landon withing remonds 1993 Leson Scots All D. 1994 Leson Millinger Web 1994 Couella: Con Polori, Loo Mall 1997 Couella: Ann Mall Call
exponential Poisson Markov	1968-69 Mandelbrot LRD (fBm) heavy tails	

Historical perspective

17 Erlange	Marcui suitching nethords	88 Lan Lacker surching the lack of the lack of the lack of some sons and the lack of the l
exponential Poisson Markov	₹ 1968-69 Mandelbrot LRD (fBm) heavy tails	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Historical perspective

17 Erlang.	Note of Survey Surveying Returned	$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$
exponential Poisson Markov	1968-69 Mandelbrot LRD (fBm) heavy tails	· · · · · · · · · · · · · · · · · · ·

Some open questions:

- Long Range Dependence / Heavy Tailed distributions impact on QoS ?
- Existing models (e.g. Padhye) only predict mean metrics (e.g. throughput) : what about variability?

P. Gonçalves (Inria)

Scaling properties of traffic

Our approach

To combine theoretical models with controlled experiments in realistic environments and real-world traffic traces

Simplified System

- Congestion essentially arises at the access points
 - \rightarrow Simplified System : single bottleneck
- Users' behavior : ON/OFF source model
- MetroFlux: a probe for traffic capture at packet level (O. Goga,...)

P. Gonçalves (Inria)

Scaling properties of traffic

Long memory in aggregated traffic: the Taqqu model

 \bullet Heavy-tailed distributed ON periods: heavy tail index $\alpha_{\it ON}>1$

Theorem (Taqqu, Willinger, Sherman, 1997)

In the limit of a large number of sources N_{src} , if:

- flow throughput is constant,
- same throughput for all flows ;

aggregated bandwidth $B^{(\Delta)}(t)$ is long range dependent, with parameter:

$$H = \max\left(rac{3-lpha_{ON}}{2} \;,\; rac{1}{2}
ight)$$

Long memory: long range correlation (H > 1/2)

$${\it Cov}_{B^{(\Delta)}}(au) = \mathbb{E} \left\{ B^{(\Delta)}(t) B^{(\Delta)}(t+ au)
ight\} {}_{\substack{\sim \ au o \infty}} au^{(2H-2)}$$

Variance grows faster than Δ : $\mathbb{V}ar \left\{ B^{(\Delta)}(t) \right\} \sim \Delta^{2H}$

Theorem validation on a realistic environment

- Controlled experiment: MetroFlux 1 Gbps, 100 sources, 8 hours traffic
- UDP/TCP: throughput limited to 5 Mbps (no congestion)

- \Rightarrow Protocol has no influence at large scales
- \Rightarrow Long memory shows up beyond scale $\Delta = \mu_{ON}$ (mean flow duration)

Influence of flow mean throughput / duration correlation

• Web traffic acquired at in2p3 (Lyon) with *MetroFlux* 10 Gbps

- Heavy-tailed ON periods, $\alpha_{ON} = 1.2$
- Heavy tailed flow sizes, $\alpha_{SI} = 0.85$

Influence of flow mean throughput / duration correlation

• Web traffic acquired at in2p3 (Lyon) with *MetroFlux* 10 Gbps

- Heavy-tailed ON periods, $\alpha_{ON} = 1.2$
- Heavy tailed flow sizes, $\alpha_{SI} = 0.85$
- Flow throughput and duration are correlated:

 $\mathbb{E}\{ ext{thr.}| ext{dur.}\}\propto(ext{dur.})^{eta-1},\quadeta=lpha_{ ext{ON}}/lpha_{ ext{SI}}~(=1.4)$

 \Rightarrow Which heavy tail index does control LRD ? (α_{ON} , α_{SI}) ?

Scaling properties of traffic

• Planar Poisson process to describe arrival instant vs duration

Proposition (LGVBP, 2009)

Model: \mathbb{E} {through.|dur.} = $M \cdot (dur.)^{\beta-1}$; \mathbb{V} ar{through.|dur.} = V

$$Cov_{\mathcal{B}(\Delta)}(\tau) = CM^2 \tau^{-(\alpha_{ON}-2(\beta-1))+1} + C'V \tau^{-\alpha_{ON}+1}$$

• Planar Poisson process to describe arrival instant vs duration

Proposition (LGVBP, 2009)

Model: \mathbb{E} {through.|dur.} = $M \cdot (dur.)^{\beta-1}$; \mathbb{V} ar{through.|dur.} = V

$$Cov_{B^{(\Delta)}}(\tau) = CM^2 \tau^{-(lpha_{ON}-2(eta-1))+1} + C'V \tau^{-lpha_{ON}+1}$$

- Correlations intensify LRD ($\beta > 1$)
- Traffic evolution, future Internet: "flow-aware" control mechanisms, FTTH

The situation is complex...

The situation is complex...

- Negative on finite queues with UDP flows [cf. Mandjes, 2004 (infinite queues)]
 - LRD degrades QoS for large queue sizes (beyond some threshold)
 - but the threshold depends on the considered QoS metric (loss rate vs mean load)

The situation is complex...

- Negative on finite queues with UDP flows [cf. Mandjes, 2004 (infinite queues)]
 - LRD degrades QoS for large queue sizes (beyond some threshold)
 - but the threshold depends on the considered QoS metric (loss rate vs mean load)
- Questionable with TCP flows: [Park, 1997] against [Ben Fredj, 2001]
 - LRD has contradictory effects on QoS metrics depending on:

	with slow start	without slow start
Delay	\searrow	7
loss rate	\searrow	\rightarrow
mean throughput	\rightarrow	7

- Heavy tailed distributions (i.e LRD) can favour QoS for large flows

The situation is complex...

- Negative on finite queues with UDP flows [cf. Mandjes, 2004 (infinite queues)]
 - LRD degrades QoS for large queue sizes (beyond some threshold)
 - but the threshold depends on the considered QoS metric (loss rate vs mean load)
- Questionable with TCP flows: [Park, 1997] against [Ben Fredj, 2001]
 - LRD has contradictory effects on QoS metrics depending on:

	with slow start	without slow start
Delay	\searrow	\nearrow
loss rate	\searrow	\rightarrow
nean throughput	\rightarrow	\nearrow

- Heavy tailed distributions (i.e LRD) can favour QoS for large flows
- But in general, QOS is a complex function of multiple variables

r

Second level of description : single TCP source traffic

Second level of description : single TCP source traffic

- single TCP source traffic detail
- Long-lived flow \rightarrow stationary regime
- \Rightarrow How to characterize the congestion window evolution?

Markov model

*W*_i (paquets)

- Iong-lived flow stationary regime: AIMD
- model: $(W_i)_{i \ge 1}$ finite Markov chain (irreducible, aperiodic), transition matrix Q :

$$\left(\begin{array}{cc} Q_{w,\min(w+1,w_{\max})} & = & 1-p(w), \\ Q_{w,\max(\lfloor w/2 \rfloor,1)} & = & p(w). \end{array} \right)$$

- $p(\cdot)$ loss probability of at least one packet, only depends on the current congestion window (hyp.)
- Example: [Padhye, 1998] Bernoulli loss: $p(w) = 1 (1 p_{pkt})^w$

Almost sure mean throughput

• mean throughput at scale *n* (RTT):
$$\overline{W}^{(n)} = \frac{\sum_{i=1}^{n} W_i}{n}$$

Ergodic Birkhoff theorem (1931): almost sure mean

For almost all realisation, the mean throughput at scale n converges towards a value corresponding to the expectation of the invariant distribution:

$$\overline{W}^{(n)} \xrightarrow[n \to \infty]{p.s.} \overline{W}^{(\infty)} = \mathbb{E}\{W_i\}$$

• Example: [Padhye, 1998], $\overline{W}^{(\infty)} \underset{\rho_{pkt} \to 0}{\sim} \sqrt{\frac{3}{2\rho_{pkt}}}$ (RTT=1, MSS=1)

Throughput variability: Large Deviations

•
$$\overline{W}^{(n)} \simeq \alpha \neq \overline{W}^{(\infty)}$$
 Rare events

Large Deviations theorem (Ellis, 84) $\mathbb{P}(\overline{W}^{(n)} \simeq \alpha) \underset{n \to \infty}{\sim} \exp(n \cdot f(\alpha))$

- $f(\alpha)$ Large Deviation spectrum
- \rightarrow Scale invariant quantity

Throughput variability: Large Deviations

•
$$\overline{W}^{(n)} \simeq \alpha \neq \overline{W}^{(\infty)}$$
 Rare events

Large Deviations theorem (Ellis, 84) $\mathbb{P}(\overline{W}^{(n)} \simeq \alpha) \underset{n \to \infty}{\sim} \exp(n \cdot f(\alpha))$

- $f(\alpha)$ Large Deviation spectrum
- \rightarrow Scale invariant quantity

⇒ Does a similar theorem exist for a single realization?

Large Deviation on almost all realizations

Large Deviation theorem on almost all realisations (Loiseau et al., 2010)

For a given α , if $k_n \ge e^{nR(\alpha)}$, then a.s.

$$\frac{\#\left\{j\in\{1,\cdots,k_n\}:\overline{W}_j^{(n)}\simeq\alpha\right\}}{k_n} \underset{n\to\infty}{\sim} \exp(n\cdot f(\alpha))$$

- Price to pay": exponential increase of the number of intervals
- Finite realization (of size N): $nk_n = N$
- $\Rightarrow [\alpha_{\min}(n), \alpha_{\max}(n)]$ support of observable spectrum at scale n

Large Deviation on almost all realizations

Large Deviation theorem on almost all realisations (Loiseau et al., 2010)

For a given α , if $k_n \ge e^{nR(\alpha)}$, then a.s.

$$\frac{\#\left\{j\in\{1,\cdots,k_n\}:\overline{W}_j^{(n)}\simeq\alpha\right\}}{k_n} \underset{n\to\infty}{\sim} \exp(n\cdot f(\alpha))$$

- "Price to pay": exponential increase of the number of intervals
- Finite realization (of size N): $nk_n = N$
- $\Rightarrow [\alpha_{\min}(n), \alpha_{\max}(n)]$ support of observable spectrum at scale n
 - Theory: $p(\cdot) \rightarrow Q \rightarrow f(\alpha), R(\alpha), \alpha_{\min}, \alpha_{\max}$
 - Practice: $(W_i)_{i \leq N} \rightarrow$ observed distribution

• Apex: almost sure mean: 8.6 packets (Padhye: $\sqrt{\frac{3}{2p_{pkt}}} = 8.66$)

• Apex: almost sure mean: 8.6 packets (Padhye: $\sqrt{\frac{3}{2p_{pkt}}} = 8.66$)

• Apex: almost sure mean: 8.6 packets (Padhye: $\sqrt{\frac{3}{2p_{pkt}}} = 8.66$)

- Apex: almost sure mean: 8.6 packets (Padhye: $\sqrt{\frac{3}{2p_{pkt}}} = 8.66$)
- Superimposition at different scales \rightarrow scale invariance

• Apex: almost sure mean: 8.6 packets (Padhye: $\sqrt{\frac{3}{2p_{pkt}}} = 8.66$)

- Superimposition at different scales \rightarrow scale invariance
- beyond n = 100: variability

n=100, portion of intervals with mean $\sim 11:~e^{-100\times0.01}=0.37$

- n=200, portion of intervals with mean $\sim 11:~e^{-200\times0.01}=0.14$
- ⇒ More accurate information than the almost sure mean

Scaling properties of traffic

Results II: case of a long-lived flow

P. Gonçalves (Inria)

Two important assets for Large Deviations Utility

General result ("Large deviations for the local fluctuations of random walks", J. Barral, P. Loiseau, *Stochastic Processes and their Applications*, 2011)

A wide class of processes (stationary & mixing) verifies an empirical large deviation principle. In particular, this results holds true any time series that can reliably be modelled by an irreducible, aperiodic Markov process.

Theorem ("On the estimation of the Large Deviations spectrum", J. Barral, P. G., J. stat. Phys., 2011)

We derived a consistent estimator of the large deviation spectrum from a finite size time series (observation samples). We proved convergence on mathematical objects with scale invariance properties (multifractal measures and processes).

Empirical estimation from a finite length trace
Workload Volatility

Context Applications that undergo highly time-varying (elastic) workloads (e.g. Buzz demand in a VoD system)

Workload Volatility

- Context Applications that undergo highly time-varying (elastic) workloads (e.g. Buzz demand in a VoD system)
 - **Goal** Dynamic resource allocation yielding a good compromise between capex and opex costs

Workload Volatility

- Context Applications that undergo highly time-varying (elastic) workloads (e.g. Buzz demand in a VoD system)
 - **Goal** Dynamic resource allocation yielding a good compromise between capex and opex costs

Workload Volatility

- Context Applications that undergo highly time-varying (elastic) workloads (e.g. Buzz demand in a VoD system)
 - **Goal** Dynamic resource allocation yielding a good compromise between capex and opex costs

Approach Combine the three ingredients:

Workload Volatility

- Context Applications that undergo highly time-varying (elastic) workloads (e.g. Buzz demand in a VoD system)
 - **Goal** Dynamic resource allocation yielding a good compromise between capex and opex costs

Approach Combine the three ingredients:

• A sensible (epidemic) model to catch the burstiness and the dynamics of the workload

Workload Volatility

- Context Applications that undergo highly time-varying (elastic) workloads (e.g. Buzz demand in a VoD system)
 - **Goal** Dynamic resource allocation yielding a good compromise between capex and opex costs

Approach Combine the three ingredients:

- A sensible (epidemic) model to catch the burstiness and the dynamics of the workload
- A (Markov) model that verifies a large deviations principle

Workload Volatility

- Context Applications that undergo highly time-varying (elastic) workloads (e.g. Buzz demand in a VoD system)
 - **Goal** Dynamic resource allocation yielding a good compromise between capex and opex costs

Approach Combine the three ingredients:

- A sensible (epidemic) model to catch the burstiness and the dynamics of the workload
- A (Markov) model that verifies a large deviations principle
- A probabilistic management policy based on the large deviation characterisation

An epidemic based model for volatile workload

A hidden state Markov process with memory effect [IEICE 2012, TRAC 2013]

An epidemic based model for volatile workload

A hidden state Markov process with memory effect [IEICE 2012, TRAC 2013]

i: current # of viewers / r: current # of infected

A MCMC based estimation procedure for the model's parameters [Gretsi 2013]

Param. estimation precision

A MCMC based estimation procedure for the model's parameters [Gretsi 2013]

Param. estimation precision

A MCMC based estimation procedure for the model's parameters [Gretsi 2013]

A MCMC based estimation procedure for the model's parameters [Gretsi 2013]

P. Gonçalves (Inria)

Scaling properties of traffic

CLOSER 2014 20 / 26

A MCMC based estimation procedure for the model's parameters [Gretsi 2013]

P. Gonçalves (Inria)

Scaling properties of traffic

CLOSER 2014 20 / 26

A MCMC based estimation procedure for the model's parameters [Gretsi 2013]

P. Gonçalves (Inria)

Scaling properties of traffic

Large Deviations Principle

A process I_t verifies a large deviations principle:

$$\mathbb{P}\{\langle I_t \rangle_{\tau} \in [\alpha - \varepsilon_{\tau}, \alpha + \varepsilon_{\tau}]\} \sim \exp\left(\tau \cdot f(\alpha)\right), \quad \tau \to \infty$$

- τ : average time scale
- $f(\alpha)$: large deviations spectrum of I_t

Large Deviations Principle

A process I_t verifies a large deviations principle:

$$\mathbb{P}\{\langle I_t \rangle_{\tau} \in [\alpha - \varepsilon_{\tau}, \alpha + \varepsilon_{\tau}]\} \sim \exp\left(\tau \cdot f(\alpha)\right), \quad \tau \to \infty$$

- au : average time scale
- $f(\alpha)$: large deviations spectrum of I_t

Large Deviations Principle

A process I_t verifies a large deviations principle:

$$\mathbb{P}\{\langle I_t \rangle_{\tau} \in [\alpha - \varepsilon_{\tau}, \alpha + \varepsilon_{\tau}]\} \sim \exp\left(\tau \cdot f(\alpha)\right), \quad \tau \to \infty$$

- : average time scale au
- $f(\alpha)$: large deviations spectrum of I_t

"Dynamic" implies time scale: a notion that is explicit in large deviations principle

P. Gonçalves (Inria)

Scaling properties of traffic

CLOSER 2014 21 / 26

 \rightarrow Resource provisioning based on a time scale dependent performance evaluation

 \rightarrow Resource provisioning based on a time scale dependent performance evaluation \rightarrow Dynamic management

Scaling properties of traffic

CLOSER 2014 23 / 26

Reactivity scale for reconfiguring resource allocation is a compromise between:

- the level of congestion (or losses) yielding tolerable performance degradation
- the affordable price for a frequent reconfiguration of infrastructures

Reactivity scale for reconfiguring resource allocation is a compromise between:

- the level of congestion (or losses) yielding tolerable performance degradation
- the affordable price for a frequent reconfiguration of infrastructures

Assume admissible bounds for these 2 competing factors:

- $\alpha^* > \alpha_{a.s.}$ beyond, it is mandatory (or profitable) reallocating resources \leftarrow capex performance concern
 - σ^* acceptable probability of occurrence of overflows \leftarrow opex cost

Reactivity scale for reconfiguring resource allocation is a compromise between:

- the level of congestion (or losses) yielding tolerable performance degradation
- the affordable price for a frequent reconfiguration of infrastructures

Assume admissible bounds for these 2 competing factors:

- $\alpha^* > \alpha_{a.s.}$ beyond, it is mandatory (or profitable) reallocating resources \leftarrow capex performance concern
 - σ^* acceptable probability of occurrence of overflows \leftarrow opex cost

and $f(\alpha)$ is identifiable

Reactivity scale for reconfiguring resource allocation is a compromise between:

- the level of congestion (or losses) yielding tolerable performance degradation
- the affordable price for a frequent reconfiguration of infrastructures

Assume admissible bounds for these 2 competing factors:

 $\alpha^* > \alpha_{a.s.}$ beyond, it is mandatory (or profitable) reallocating resources \leftarrow capex performance concern

 $\sigma^* \text{ acceptable probability of occurrence of overflows} \\ \leftarrow \text{ opex cost}$

and $f(\alpha)$ is identifiable

Optimal reconfiguration time scale for dynamic resource provisioning:

$$\tau^* : \mathbf{Pr}\{\langle I \rangle_{\tau^*} \ge \alpha^*\} \approx \int_{\alpha^*}^{\infty} \mathcal{P}_{\tau^*}(\alpha) \, \mathrm{d}\alpha > \sigma^*$$

The Service Level Agreement fixes:

- . . .
- an admissible level of losses due to link congestion

The Service Level Agreement fixes:

- . . .
- an admissible level of losses due to link congestion

Assume $f(\alpha)$ is identifiable

The Service Level Agreement fixes:

- . . .
- an admissible level of losses due to link congestion

Assume $f(\alpha)$ is identifiable

 $C_0 = \alpha_{a.s.}$ The dedicated link capacity (nominal functioning)
Elastic link capacity dimensioning

The Service Level Agreement fixes:

- . . .
- an admissible level of losses due to link congestion

Assume $f(\alpha)$ is identifiable

 $C_0 = \alpha_{a.s.}$ The dedicated link capacity (nominal functioning)

The shared bandwidth needed to absorb bursty overflows, while guaranteeing QoS (loss rate) conformed to SLA:

$$\widetilde{\mathcal{C}}_{\tau_{\min}} = \int_{\alpha_{\mathrm{a.s.}}}^{\infty} (\alpha - \alpha_{\mathrm{a.s.}}) \mathcal{P}_{\tau_{\min}}(\alpha) \,\mathrm{d}\alpha$$

Elastic link capacity dimensioning

The Service Level Agreement fixes:

- . . .
- an admissible level of losses due to link congestion

Assume $f(\alpha)$ is identifiable

 $C_0 = \alpha_{a.s.}$ The dedicated link capacity (nominal functioning)

 $\widetilde{C}_{\tau_{\min}}$ The shared bandwidth needed to absorb bursty overflows, while guaranteeing QoS (loss rate) conformed to SLA:

$$\widetilde{C}_{\tau_{\min}} = \int_{\alpha_{\mathrm{a.s.}}}^{\infty} (\alpha - \alpha_{\mathrm{a.s.}}) P_{\tau_{\min}}(\alpha) \,\mathrm{d}\alpha$$

 $\tau_{\rm min}\,$ Determined by the buffer size provisioned to dampen traffic volatility

Concluding remarks

Concluding remarks

Scaling laws Present in many (complex) systems

Likely to become ever more ubiquitous (big data sets, heterogeneity, traffic awareness...)

Impact (on performance) are still little known

Concluding remarks

Scaling laws	Present in many (complex) systems
	Likely to become ever more ubiquitous (big data sets, heterogeneity, traffic awareness)
	Impact (on performance) are still little known
Large Dev. Princ.	Insufficiently exploited so far
	Holds true for a large class of modelling processes
	Takes explicitly into account the role of time scale
	Conveys information about the dynamics of the process