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Scaling Properties of Traffic

Historical perspective
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Some open questions:
Long Range Dependence / Heavy Tailed distributions impact on QoS ?
Existing models (e.g. Padhye) only predict mean metrics (e.g. throughput) :
what about variability?
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Some open questions:
Long Range Dependence / Heavy Tailed distributions impact on QoS ?
Existing models (e.g. Padhye) only predict mean metrics (e.g. throughput) :
what about variability?
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Some open questions:
Long Range Dependence / Heavy Tailed distributions impact on QoS ?
Existing models (e.g. Padhye) only predict mean metrics (e.g. throughput) :
what about variability?
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Scaling Properties of Traffic

Our approach

To combine theoretical models with controlled experiments in realistic
environments and real-world traffic traces
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Scaling Properties of Traffic

Simplified System

Access Point Core Network
Congestion Overdimensioned

– Congestion essentially arises at the access points
→ Simplified System : single bottleneck

– Users’ behavior : ON/OFF source model

– MetroFlux : a probe for traffic capture at packet level (O. Goga,. . . )
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Scaling Properties of Traffic Heavy tailed distributions and long range dependence

Long memory in aggregated traffic: the Taqqu model

Heavy-tailed distributed ON periods: heavy tail index αON > 1

Theorem (Taqqu, Willinger, Sherman, 1997)

In the limit of a large number of sources Nsrc, if:

flow throughput is constant,

same throughput for all flows ;

aggregated bandwidth B(∆)(t) is long range dependent, with parameter:

H = max
(
3− αON

2
,
1
2

)
Long memory: long range correlation (H > 1/2)

CovB(∆) (τ) = E
{
B(∆)(t)B(∆)(t + τ)

}
∼

τ→∞
τ (2H−2)

Variance grows faster than ∆: Var
{
B(∆)(t)

}
∼ ∆2H
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Scaling Properties of Traffic Heavy tailed distributions and long range dependence

Theorem validation on a realistic environment

Controlled experiment: MetroFlux 1 Gbps, 100 sources, 8 hours traffic

UDP/TCP: throughput limited to 5 Mbps (no congestion)

ON Distribution Log-diagram Taqqu Prediction
(source) (aggregated traffic)
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⇒ Protocol has no influence at large scales

⇒ Long memory shows up beyond scale ∆ = µON (mean flow duration)
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Scaling Properties of Traffic Heavy tailed distributions and long range dependence

Influence of flow mean throughput / duration correlation

Web traffic acquired at in2p3 (Lyon) with MetroFlux 10 Gbps

ON Distribution Size Distribution

Mean throughput
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Heavy-tailed ON periods, αON = 1.2

Heavy tailed flow sizes, αSI = 0.85

Flow throughput and duration are correlated:

E{thr.|dur.} ∝ (dur.)β−1, β = αON/αSI (= 1.4)

⇒ Which heavy tail index does control LRD ? (αON , αSI ) ?

P. Gonçalves (Inria) Scaling properties of traffic CLOSER 2014 7 / 26



Scaling Properties of Traffic Heavy tailed distributions and long range dependence

Influence of flow mean throughput / duration correlation

Web traffic acquired at in2p3 (Lyon) with MetroFlux 10 Gbps

ON Distribution Size Distribution Mean throughput

d
is
tr
ib
u
ti
o
n

0.01ms0.1ms1ms10ms0.1s 1s 10s 100s1000s

10
−10

10
−5

10
0

α
ON

=1.2

d
is
tr
ib
u
ti
o
n

10
0

10
5

10
10

10
−10

10
−5

10
0

α
SI

=0.85

E{
th
r.
|d

u
r.
}

0.1s 1s 10s 100s 1000s
10

4

10
5

10
6

10
7

β−1=0.4

ON duration size duration

Heavy-tailed ON periods, αON = 1.2

Heavy tailed flow sizes, αSI = 0.85

Flow throughput and duration are correlated:

E{thr.|dur.} ∝ (dur.)β−1, β = αON/αSI (= 1.4)

⇒ Which heavy tail index does control LRD ? (αON , αSI ) ?

P. Gonçalves (Inria) Scaling properties of traffic CLOSER 2014 7 / 26



Scaling Properties of Traffic Heavy tailed distributions and long range dependence

Taqqu model extension

Planar Poisson process to describe arrival instant vs duration

Log-diagram, β > 1
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Scaling Properties of Traffic Heavy tailed distributions and long range dependence

Taqqu model extension

Planar Poisson process to describe arrival instant vs duration

Proposition (LGVBP, 2009)

Model: E{through.|dur.} = M · (dur.)β−1; Var{through.|dur.} = V

CovB(∆) (τ) = CM2τ−(αON−2(β−1))+1 + C ′V τ−αON+1

Log-diagram, β > 1
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Taqqu model extension

Planar Poisson process to describe arrival instant vs duration

Proposition (LGVBP, 2009)
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Correlations intensify LRD (β > 1)

Traffic evolution, future Internet:
“flow-aware” control mechanisms,
FTTH
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Scaling Properties of Traffic Heavy tailed distributions and long range dependence

LRD impact on QoS: a brief (experimental) outlook
The situation is complex. . .

Negative on finite queues with UDP flows [cf. Mandjes, 2004 (infinite
queues)]

– LRD degrades QoS for large queue sizes (beyond some threshold)
– but the threshold depends on the considered QoS metric (loss rate vs

mean load)

Questionable with TCP flows: [Park, 1997] against [Ben Fredj, 2001]

– LRD has contradictory effects on QoS metrics depending on:

with slow start without slow start

Delay ↘ ↗

loss rate ↘ →

mean throughput → ↗

– Heavy tailed distributions (i.e LRD) can favour QoS for large flows

But in general, QOS is a complex function of multiple variables
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Scaling Properties of Traffic TCP and large deviations principle

Second level of description : single TCP source traffic

Nsrc


Sources

1

Agrégat

τON τOFF
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Scaling Properties of Traffic TCP and large deviations principle

Second level of description : single TCP source traffic

i (RTT)
Sources

1

Agrégat

τON τOFF

Nsrc

Wi

single TCP source traffic detail

Long-lived flow → stationary regime

⇒ How to characterize the congestion window evolution?
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Scaling Properties of Traffic TCP and large deviations principle

Markov model

i (RTT)

Wi (paquets)

n

long-lived flow stationary regime: AIMD

model: (Wi )i≥1 finite Markov chain (irreducible, aperiodic), transition matrix
Q : {

Qw,min(w+1,wmax) = 1− p(w),
Qw,max(bw/2c,1) = p(w).

p(·) loss probability of at least one packet, only depends on the current
congestion window (hyp.)

Example: [Padhye, 1998] Bernoulli loss: p(w) = 1− (1− ppkt)
w
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Scaling Properties of Traffic TCP and large deviations principle

Almost sure mean throughput

W
(n)

i (RTT)

Wi (paquets)

n

mean throughput at scale n (RTT): W
(n)

=
∑n

i=1 Wi

n

Ergodic Birkhoff theorem (1931): almost sure mean

For almost all realisation, the mean throughput at scale n converges towards a value
corresponding to the expectation of the invariant distribution:

W
(n) p.s.−−−→

n→∞
W

(∞)
= E{Wi}

Example: [Padhye, 1998], W
(∞) ∼

ppkt→0

√
3

2ppkt
(RTT=1, MSS=1)
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Scaling Properties of Traffic TCP and large deviations principle

Throughput variability: Large Deviations

W
(n)

Wi

n

W
(n)

i

Wi

n

i

W
(n) ' α 6= W

(∞)
Rare events

Large Deviations theorem (Ellis, 84)

P(W
(n) ' α) ∼

n→∞
exp(n · f (α))

f (α) Large Deviation spectrum

→ Scale invariant quantity

W
(∞)

0

α

f (α)

⇒ Does a similar theorem exist for a single realization?
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Scaling Properties of Traffic TCP and large deviations principle

Large Deviation on almost all realizations

intervalle knWi

n

W
(n)
1

2n iknn

W
(n)
kn

intervalle 1

Large Deviation theorem on almost all realisations (Loiseau et al., 2010)

For a given α, if kn ≥ enR(α), then a.s.

#
{
j ∈ {1, · · · , kn} : W

(n)
j ' α

}
kn

∼
n→∞

exp(n · f (α))

“Price to pay”: exponential increase of the number of intervals

Finite realization (of size N): nkn = N

⇒ [αmin(n), αmax(n)] support of observable spectrum at scale n

Theory: p(·) → Q → f (α),R(α), αmin, αmax

Practice: (Wi )i≤N → observed distribution
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Scaling Properties of Traffic TCP and large deviations principle

Results: example of Bernoulli losses (ppkt = 0.02)
f

(α
)

4 10 16

−0.1

−0.05

0

 

 

W
(∞)

theorique

α (packets)

Apex: almost sure mean: 8.6 packets (Padhye:
√

3
2ppkt

= 8.66)

Superimposition at different scales → scale invariance

beyond n = 100: variability
n = 100, portion of intervals with mean ∼ 11: e−100×0.01 = 0.37
n = 200, portion of intervals with mean ∼ 11: e−200×0.01 = 0.14

⇒ More accurate information than the almost sure mean
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Scaling Properties of Traffic TCP and large deviations principle

Results II: case of a long-lived flow

losses: not Bernoulli
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Scaling Properties of Traffic Large Deviations Principle in practice

Two important assets for Large Deviations Utility

General result ( “Large deviations for the local fluctuations of random walks", J. Barral, P. Loiseau, Stochastic

Processes and their Applications, 2011)

A wide class of processes (stationary & mixing) verifies an empirical large deviation
principle. In particular, this results holds true any time series that can reliably be
modelled by an irreducible, aperiodic Markov process.

Theorem ( “On the estimation of the Large Deviations spectrum", J. Barral, P. G., J. stat. Phys., 2011)

We derived a consistent estimator of the large deviation spectrum from a finite size time
series (observation samples). We proved convergence on mathematical objects with
scale invariance properties (multifractal measures and processes).

Empirical estimation from a finite length trace
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Scaling Properties of Traffic Large Deviations for probabilistic resource management

Probabilistic Resources Allocation Based on a LDP

Workload Volatility
Context Applications that undergo highly time-varying (elastic) workloads

(e.g. Buzz demand in a VoD system)

Goal Dynamic resource allocation yielding a good compromise between
capex and opex costs

Number of current VoD users

0 50 100 150 200
0

20

40

60

80

100

120

140

under−provisioning

time

Approach Combine the three ingredients:

A sensible (epidemic) model to catch
the burstiness and the dynamics of the
workload

A (Markov) model that verifies a large
deviations principle

A probabilistic management policy
based on the large deviation
characterisation
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Scaling Properties of Traffic Large Deviations for probabilistic resource management

An epidemic based model for volatile workload

A hidden state Markov process with memory effect [IEICE 2012, TRAC 2013]
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i+1, r

i-1, r+1

β(i+r)+l
β = β1

β = β2

γi
μr

a1 a2

i : current # of viewers / r : current # of infected
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Scaling Properties of Traffic Large Deviations for probabilistic resource management

Model identification and evaluation
A MCMC based estimation procedure for the model’s parameters [Gretsi 2013]

Param. estimation precision

Steady state distribution Autocorrelation function
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Scaling Properties of Traffic Large Deviations for probabilistic resource management

Large Deviations Principle

A process It verifies a large deviations principle:

P{〈It〉τ ∈ [α− ετ , α + ετ ]} ∼ exp (τ · f (α)) , τ →∞
τ : average time scale

f (α) : large deviations spectrum of It
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"Dynamic" implies time scale: a notion that is explicit in large deviations principle
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Scaling Properties of Traffic Large Deviations for probabilistic resource management

Overflow propability
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Scaling Properties of Traffic Large Deviations for probabilistic resource management

Probabilistic resource provisioning
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Scaling Properties of Traffic Large Deviations for probabilistic resource management

Optimal reactive time scale for reconfiguration

Reactivity scale for reconfiguring resource allocation is a compromise between:

the level of congestion (or losses) yielding tolerable performance degradation

the affordable price for a frequent reconfiguration of infrastructures

Assume admissible bounds for these 2 competing factors:

α∗ > αa.s. beyond, it is mandatory (or profitable) reallocating resources
← capex performance concern

σ∗ acceptable probability of occurrence of overflows
← opex cost

and f (α) is identifiable

Optimal reconfiguration time scale for dynamic resource provisioning:

τ∗ : Pr{〈I 〉τ∗ ≥ α∗} ≈
∫ ∞
α∗

Pτ∗(α) dα > σ∗
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σ∗ acceptable probability of occurrence of overflows
← opex cost

and f (α) is identifiable

Optimal reconfiguration time scale for dynamic resource provisioning:

τ∗ : Pr{〈I 〉τ∗ ≥ α∗} ≈
∫ ∞
α∗

Pτ∗(α) dα > σ∗
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Scaling Properties of Traffic Large Deviations for probabilistic resource management

Elastic link capacity dimensioning

The Service Level Agreement fixes:

. . .

an admissible level of losses due to link congestion

Assume f (α) is identifiable

C0 = αa.s. The dedicated link capacity (nominal functioning)

C̃τmin The shared bandwidth needed to absorb bursty overflows,
while guaranteeing QoS (loss rate) conformed to SLA:

C̃τmin =

∫ ∞
αa.s.

(α− αa.s.)Pτmin(α) dα

τmin Determined by the buffer size provisioned to dampen traffic
volatility

P. Gonçalves (Inria) Scaling properties of traffic CLOSER 2014 25 / 26



Scaling Properties of Traffic Large Deviations for probabilistic resource management

Elastic link capacity dimensioning

The Service Level Agreement fixes:

. . .

an admissible level of losses due to link congestion

Assume f (α) is identifiable

C0 = αa.s. The dedicated link capacity (nominal functioning)

C̃τmin The shared bandwidth needed to absorb bursty overflows,
while guaranteeing QoS (loss rate) conformed to SLA:

C̃τmin =

∫ ∞
αa.s.

(α− αa.s.)Pτmin(α) dα

τmin Determined by the buffer size provisioned to dampen traffic
volatility

P. Gonçalves (Inria) Scaling properties of traffic CLOSER 2014 25 / 26



Scaling Properties of Traffic Large Deviations for probabilistic resource management

Elastic link capacity dimensioning

The Service Level Agreement fixes:

. . .

an admissible level of losses due to link congestion

Assume f (α) is identifiable

C0 = αa.s. The dedicated link capacity (nominal functioning)

C̃τmin The shared bandwidth needed to absorb bursty overflows,
while guaranteeing QoS (loss rate) conformed to SLA:

C̃τmin =

∫ ∞
αa.s.

(α− αa.s.)Pτmin(α) dα

τmin Determined by the buffer size provisioned to dampen traffic
volatility

P. Gonçalves (Inria) Scaling properties of traffic CLOSER 2014 25 / 26



Scaling Properties of Traffic Large Deviations for probabilistic resource management

Elastic link capacity dimensioning

The Service Level Agreement fixes:

. . .

an admissible level of losses due to link congestion

Assume f (α) is identifiable

C0 = αa.s. The dedicated link capacity (nominal functioning)

C̃τmin The shared bandwidth needed to absorb bursty overflows,
while guaranteeing QoS (loss rate) conformed to SLA:

C̃τmin =

∫ ∞
αa.s.

(α− αa.s.)Pτmin(α) dα

τmin Determined by the buffer size provisioned to dampen traffic
volatility

P. Gonçalves (Inria) Scaling properties of traffic CLOSER 2014 25 / 26



Scaling Properties of Traffic Large Deviations for probabilistic resource management

Elastic link capacity dimensioning

The Service Level Agreement fixes:

. . .

an admissible level of losses due to link congestion

Assume f (α) is identifiable

C0 = αa.s. The dedicated link capacity (nominal functioning)

C̃τmin The shared bandwidth needed to absorb bursty overflows,
while guaranteeing QoS (loss rate) conformed to SLA:

C̃τmin =

∫ ∞
αa.s.

(α− αa.s.)Pτmin(α) dα

τmin Determined by the buffer size provisioned to dampen traffic
volatility

P. Gonçalves (Inria) Scaling properties of traffic CLOSER 2014 25 / 26



Scaling Properties of Traffic Large Deviations for probabilistic resource management

Elastic link capacity dimensioning

The Service Level Agreement fixes:

. . .

an admissible level of losses due to link congestion

Assume f (α) is identifiable

C0 = αa.s. The dedicated link capacity (nominal functioning)

C̃τmin The shared bandwidth needed to absorb bursty overflows,
while guaranteeing QoS (loss rate) conformed to SLA:

C̃τmin =

∫ ∞
αa.s.

(α− αa.s.)Pτmin(α) dα

τmin Determined by the buffer size provisioned to dampen traffic
volatility

P. Gonçalves (Inria) Scaling properties of traffic CLOSER 2014 25 / 26



Scaling Properties of Traffic Concluding remarks

Concluding remarks

Scaling laws Present in many (complex) systems

Likely to become ever more ubiquitous (big data sets,
heterogeneity, traffic awareness. . . )

Impact (on performance) are still little known

Large Dev. Princ. Insufficiently exploited so far

Holds true for a large class of modelling processes

Takes explicitly into account the role of time scale

Conveys information about the dynamics of the process
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