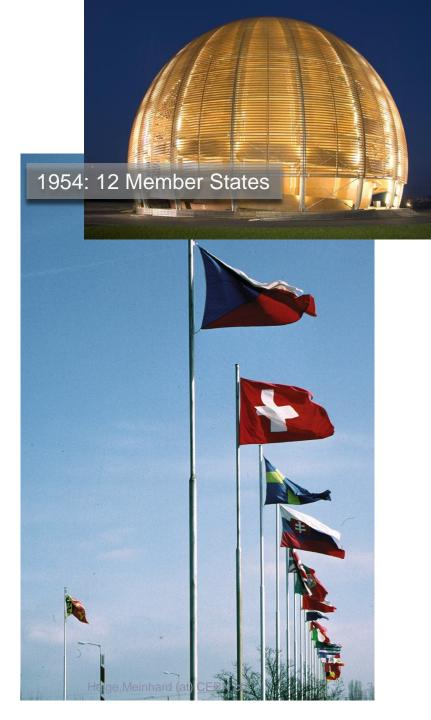
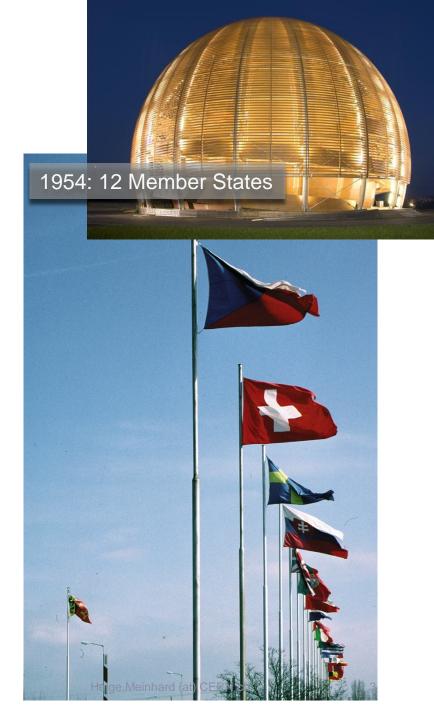


Agile Infrastructure at CERN -Moving 9'000 Servers into a Private Cloud

Helge Meinhard Leader, Platform and Engineering Services Group, IT Department 04 April 2014





Agile infrastructure project

 International organisation close to Geneva, straddling Swiss-French border, founded 1954

- International organisation close to Geneva, straddling Swiss-French border, founded 1954
- Facilities for fundamental research in particle physics

- International organisation close to Geneva, straddling Swiss-French border, founded 1954
- Facilities for fundamental research in particle physics
 - 21 member states, 1 B CHF budget

1954: 12 Member States

Members: Austria, Belgium, Bulgaria, Czech republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway, Poland, Portugal, Slovak republic, Spain, Sweden, Switzerland, United Kingdom Candidate for membership: Romania Associate member: Serbia Observers: European Commission, India, Japan, Russia, Turkey, UNESCO, United States of America Numerous non-member states with collaboration agreements

- International organisation close to Geneva, straddling Swiss-French border, founded 1954
 - Facilities for fundamental research in particle physics
 - 21 member states, 1 B CHF budget
 - 3'360 staff, fellows, students, apprentices, ...

1954: 12 Member States

Members: Austria, Belgium, Bulgaria, Czech republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway, Poland, Portugal, Slovak republic, Spain, Sweden, Switzerland, United Kingdom Candidate for membership: Romania Associate member: Serbia Observers: European Commission, India, Japan, Russia, Turkey, UNESCO, United States of America Numerous non-member states with collaboration agreements

2'512 staff members, 540 fellows, 315 students, 24 apprentices

- International organisation close to Geneva, straddling Swiss-French border, founded 1954
 - Facilities for fundamental research in particle physics
 - 21 member states, 1 B CHF budget
 - 3'360 staff, fellows, students, apprentices, ...
 - 11'000 users

1954: 12 Member States

Members: Austria, Belgium, Bulgaria, Czech republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway, Poland, Portugal, Slovak republic, Spain, Sweden, Switzerland, United Kingdom Candidate for membership: Romania Associate member: Serbia Observers: European Commission, India, Japan, Russia, Turkey, UNESCO, United States of America Numerous non-member states with collaboration agreements

2'512 staff members, 540 fellows, 315 students, 24 apprentices

6'700 member states, 1'800 USA, 900 Russia, 236 Japan, ...

- International organisation close to Geneva, straddling Swiss-French border, founded 1954
- Facilities for fundamental research in particle physics
 - 21 member states, 1 B CHF budget
 - 3'360 staff, fellows, students, apprentices, ...
 - 11'000 users

1954: 12 Member States

Members: Austria, Belgium, Bulgaria, Czech republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway, Poland, Portugal, Slovak republic, Spain, Sweden, Switzerland, United Kingdom Candidate for membership: Romania Associate member: Serbia Observers: European Commission, India, Japan, Russia, Turkey, UNESCO, United States of America Numerous non-member states with collaboration agreements

2'512 staff members, 540 fellows, 315 students, 24 apprentices

6'700 member states, 1'800 USA, 900 Russia, 236 Japan, ...

CERN – where the Web was born

CERN – where the Web was

born

ECCO IS B

CERN – where the Web was

born

Proton-proton collider

- Proton-proton collider
- 27 km circumference

- Proton-proton collider
- 27 km circumference
- Started operation in 2010 with 3.5 + 3.5 TeV, continued in 2011, 4 + 4 TeV in 2012
 - World's most powerful particle accelerator

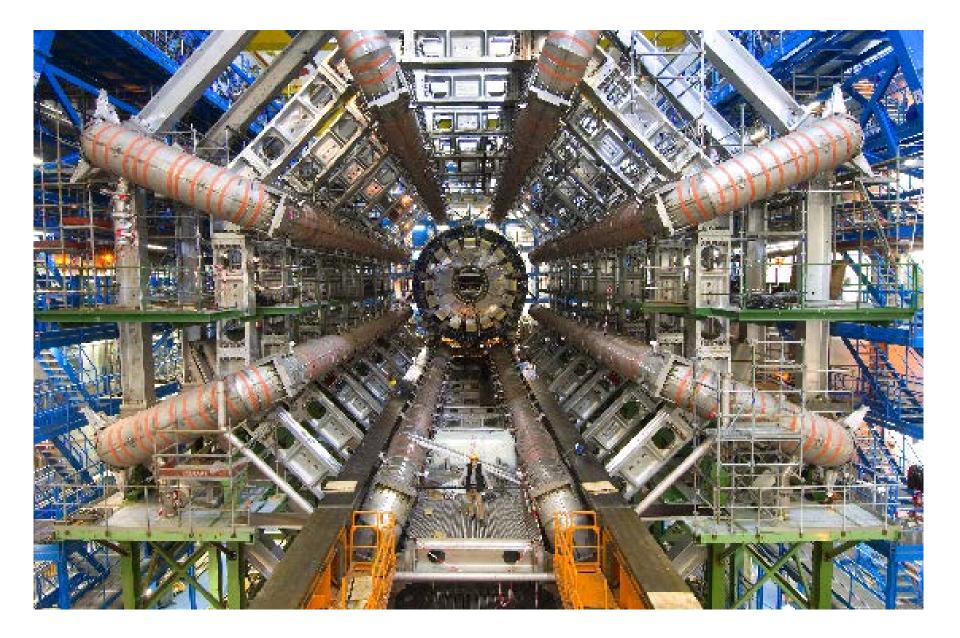
- Proton-proton collider
- 27 km circumference
- Started operation in 2010 with 3.5 + 3.5 TeV, continued in 2011, 4 + 4 TeV in 2012
 - World's most powerful particle accelerator
- Run 1 until early 2013

- Proton-proton collider
- 27 km circumference
- Started operation in 2010 with 3.5 + 3.5 TeV, continued in 2011, 4 + 4 TeV in 2012
 - World's most powerful particle accelerator
- Run 1 until early 2013
 - Now in Long Shutdown 1 – machine upgrade

- Proton-proton collider
- 27 km circumference
- Started operation in 2010 with 3.5 + 3.5 TeV, continued in 2011, 4 + 4 TeV in 2012
 - World's most powerful particle accelerator
- Run 1 until early 2013
 - Now in Long Shutdown 1 – machine upgrade
 - Restart early 2015 at 6.5 + 6.5 TeV

- Proton-proton collider
- 27 km circumference
- Started operation in 2010 with 3.5 + 3.5 TeV, continued in 2011, 4 + 4 TeV in 2012
 - World's most powerful particle accelerator
- Run 1 until early 2013
- Now in Long Shutdown 1 – machine upgrade
- Restart early 2015 at 6.5 + 6.5 TeV

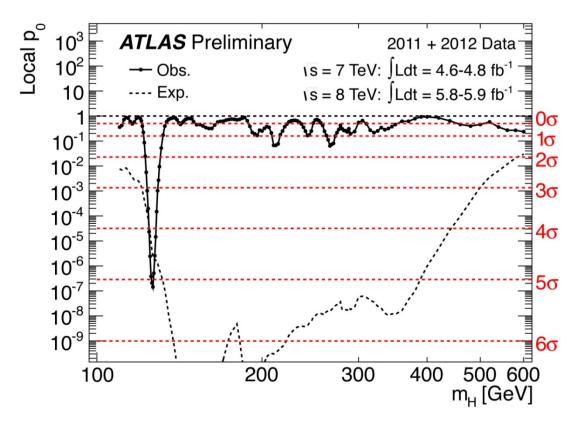
- Proton-proton collider
- 27 km circumference
- Started operation in 2010 with 3.5 + 3.5 TeV, continued in 2011, 4 + 4 TeV in 2012
 - World's most powerful particle accelerator
- Run 1 until early 2013
- Now in Long Shutdown 1 – machine upgrade
- Restart early 2015 at 6.5 + 6.5 TeV



Agile infrastructure project

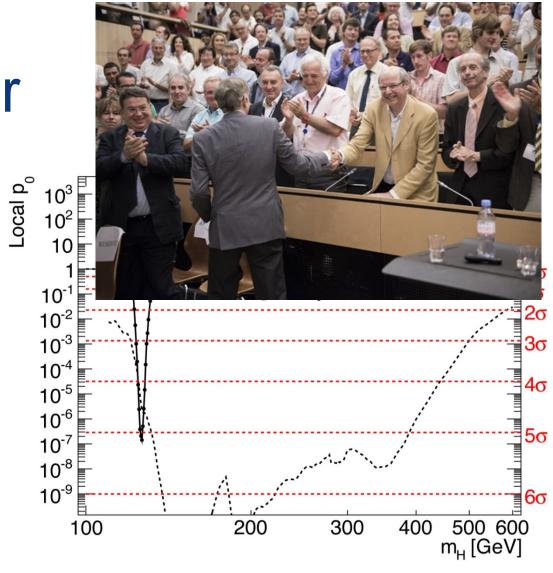
Four Large Detectors

- ATLAS, CMS, ALICE, LHCb
- Some ATLAS facts:
 - 100 million channels
 - 25 m diameter, 46 m length, 7'000 tons
 - 3'000 scientists (including 1'000 grad students)
 - 40 MHz collision rate
 - Run 1: 300 Hz event rate after filtering
- All LHC experiments: 30 PB in 2012, 100 PB in total

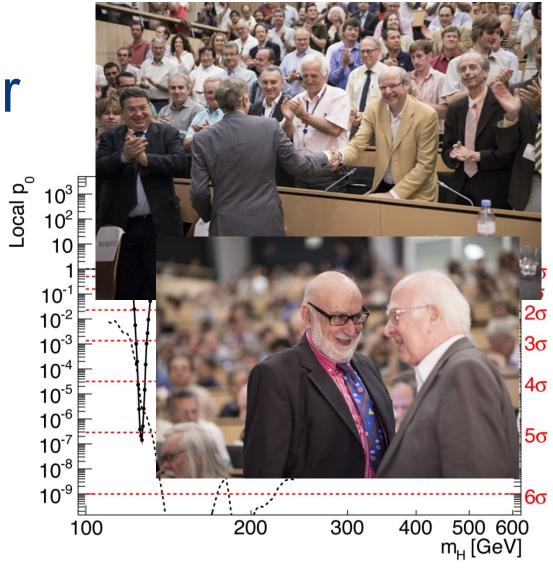


Agile infrastructure project

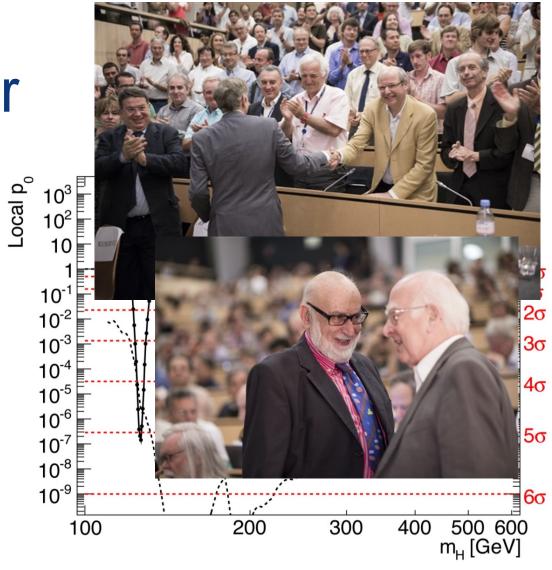
 Many... the most spectacular one being



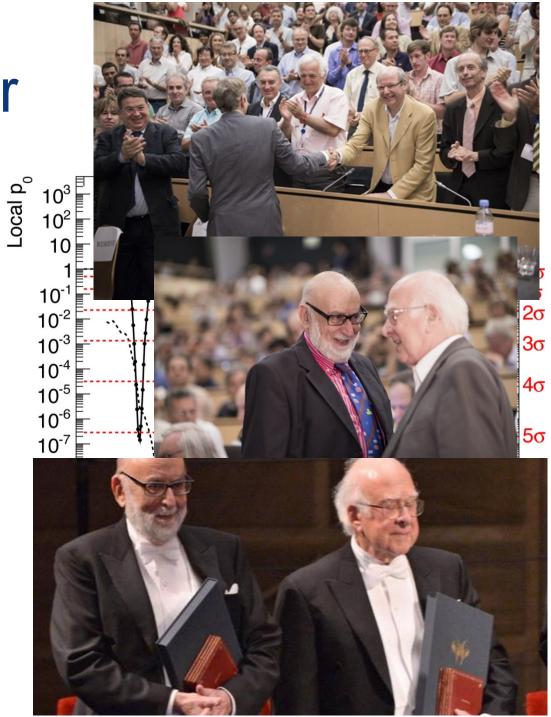
- Many... the most spectacular one being
- 04 July 2012: Discovery of a "Higgs-like particle"



- Many... the most spectacular one being
- 04 July 2012: Discovery of a "Higgs-like particle"



- Many... the most spectacular one being
- 04 July 2012: Discovery of a "Higgs-like particle"



- Many... the most spectacular one being
- 04 July 2012: Discovery of a "Higgs-like particle"
 - March 2013: The particle is indeed a Higgs boson

- Many... the most spectacular one being
- 04 July 2012: Discovery of a "Higgs-like particle"
- March 2013: The particle is indeed a Higgs boson
- 08 Oct 2013 / 10 Dec 2013: Nobel price to Peter Higgs and François Englert
 - CERN, ATLAS and CMS explicitly mentioned

Data Handling

- 30 PB per year demand 100'000 processors
- World-wide LHC Computing Grid (WLCG): 150 computer centres all around the world
 - CERN as Tier-0 largest and most important

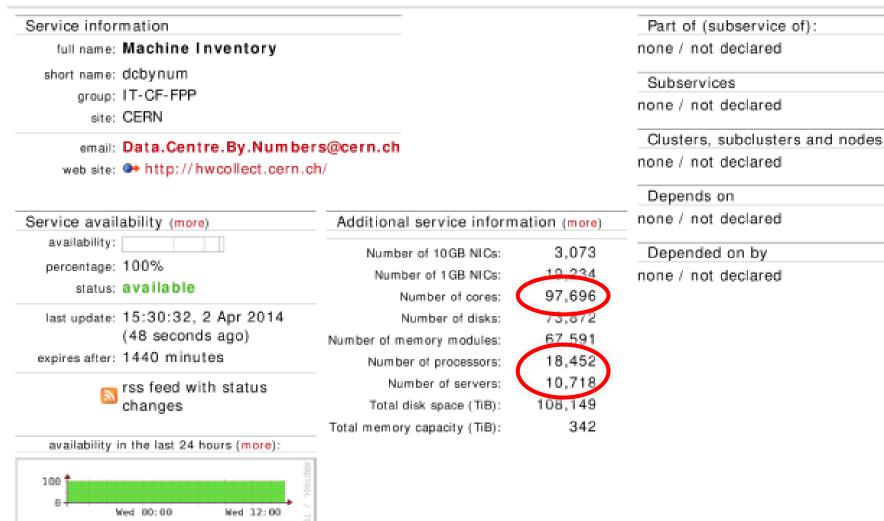
CERN Data Centre

Machine Inventory

Z A I

2 Apr 2014 Wed 15:31:20

Service information			Part of (subservice of):
full name: Machine Inventory			none / not declared
short name: dcbynum			Subservices
group: IT-CF-FPP site: CERN			none / not declared
email: Data.Centre.By.Numbers@cern.ch			Clusters, subclusters and nodes
web site: 🍽 http://hwcollect.cern.			none / not declared
			Depends on
Service availability (more)	Additional service information (more)		none / not declared
availability:	Number of 10GB NICs:	3,073	Depended on by
percentage: 100% status: available last update: 15:30:32, 2 Apr 2014 (48 seconds ago) expires after: 1440 minutes	Number of 1GB NICs:	19,234	none / not declared
	Number of cores:	97,696	
	Number of disks:	73,872	
	Number of memory modules:	67,591	
	Number of processors:	18,452	
s rss feed with status changes	Number of servers:	10,718	
	Total disk space (TiB):	108,149	
	Total memory capacity (TiB):	342	

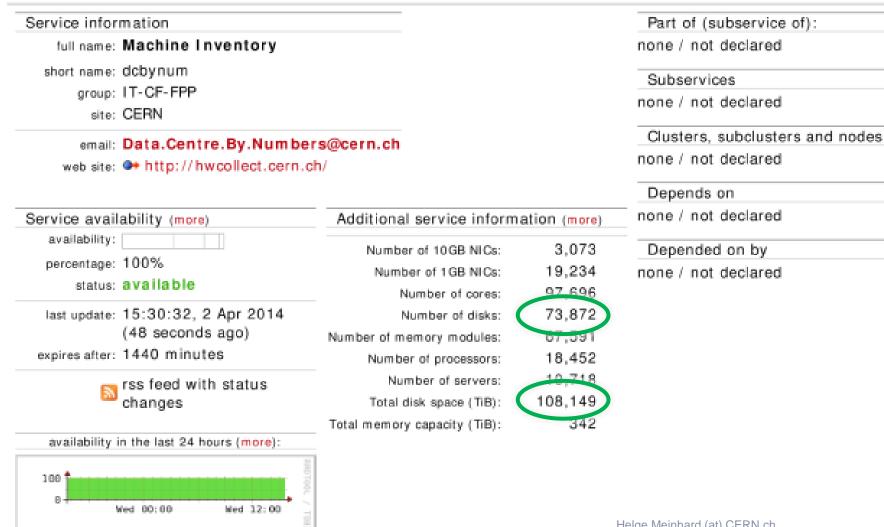

CERN Data Centre

Machine Inventory

1

A 1

2 Apr 2014 Wed 15:31:20


CERN Data Centre

Machine Inventory

1

A 1

2 Apr 2014 Wed 15:31:20

Data Handling – Future (1)

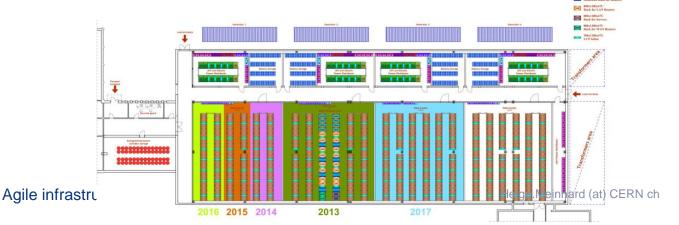
- LHC Run 2 (starting 2015): higher energy
 8 TeV to 13 TeV
- More interesting collisions to retain after filtering
 - ATLAS: 300 Hz up to 1 kHz or more
- Moore's law helps, but not sufficient
- Large effort to improve software efficiency
 - Exploit multi-threading, new instruction sets, ...
- Still need factor 2 in terms of cores, storage,

. . .

Data Handling – Future (2)

Challenges for CERN-IT

Where? CERN data centre full (3.5 MW)


- How? No additional personnel
- Traditional way of running centre does not scale

CERN Tier-0 Extension (1)

Following open tendering process: Wigner research centre in Budapest/Hungary

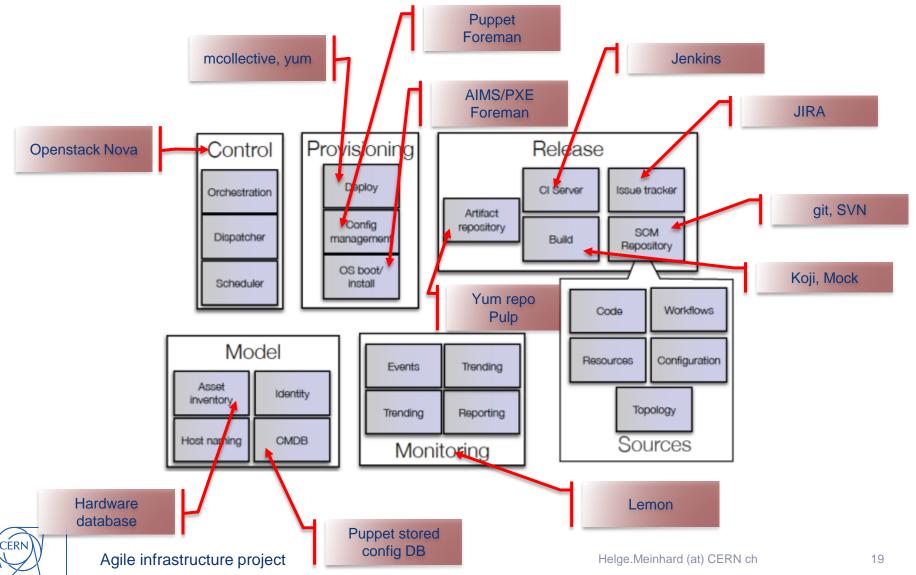
CERN Tier-0 Extension (2)

Agile Infrastructure Project (1)

- Challenges:
 - Handle 15'000 servers
 - Part of them not (easily) physically accessible
 - Quickly react to changing requirements
 - Deploy new services and servers within hours rather than weeks or months
- Not possible with previous structure
 - Mostly vertical view service managers responsible for (almost) entire stack
 - Strong coupling of services with hardware life-cycle
 - Configuration and monitoring: home-made developments of 10 years ago
 - Very successful at the time, but increasingly brittle
 - Lack of support for dynamic host creation/deletion

Agile Infrastructure Project (2)

- Launched a project in 2012 to move to a more horizontal approach
 - Services
 - Configuration
 - Software installation
 - Hardware
- Aim: improve
 - Operational efficiency
 - Resource efficiency
 - Responsiveness
- *Virtualisation* is key for 'horizontalisation'
- Virtualisation + agility + provisioning = *cloud*


Agile Infrastructure Project (3)

- Guiding principles
 - CERN is not special (any more) join the community
 - 'Tool-chain' approach
 - Break problem space down into small pieces
 - Quickly identify suitable solution for each one good enough, not necessarily best one
 - Be prepared to promptly reconsider if needed...
 - Minimal glue
 - 'Devops' approach eat your own (dog food | medicine)
 - Preference for open-source solutions
 - Benefits all parties

-

Agile Infrastructure Project (4)

Agile Infrastructure Project (5)

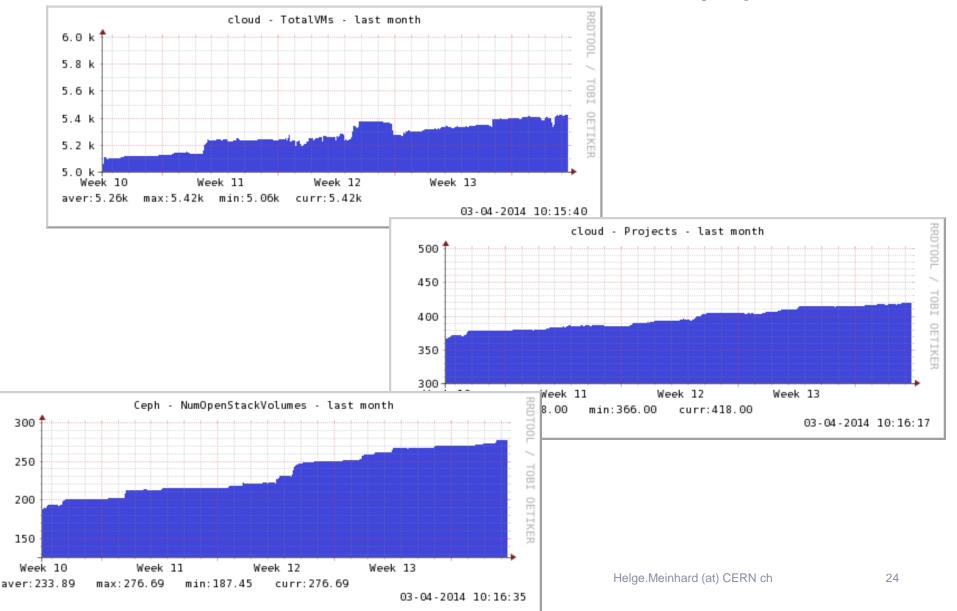
- Key areas
 - Private cloud services
 - Configuration
 - Monitoring
 - Registration, burn-in, software installation
 - Scheduling and accounting
 - ~ 15 people in the core team, mostly parttime
- Massive deployment started in 2013

Private Cloud Services (1)

- Earlier smaller-scale (production!) projects with Xen/KVM, Hyper-V; SCVMM, OpenNebula
 - Chose Openstack for the project
 - Very large, active community with attractive mix of company support and user influence
 - Moving fast new functionality becoming available very rapidly
- Followed Openstack releases
 - Essex, Folsom, Grizzly, Havana (migration completed)
 - Watching out for Icehouse
- Using Nova (multiple cells), Glance, Cinder, Keystone, Ceilometer, ...

Private Cloud Services (2)

- Fully integrated with Active Directory, CERN's network data base, account and quota management, ...
- Production service documentation, support lines, notifications, operator and sysadmin support, ...
- Focused on 'cattle' use-case first, now addressing 'pets'
- Linux (KVM) and Windows (Hyper-V) as hypervisors and guests
 - Target: >= 90% of CERN's servers



Private Cloud Services (3)

- Volume service (requirement for live migration) deployed (Cinder-based)
 - Linux: Large (3 PB) CEPH installation as backend
 - As of 03-Apr-2014: 2'615 hypervisors, 5'515 VMs
 - Including major part of large-scale batch service (4'500 physical servers total)
 - Rapid growth (100 or more hypervisors per week)

Private Cloud Services (4)

Configuration (1)

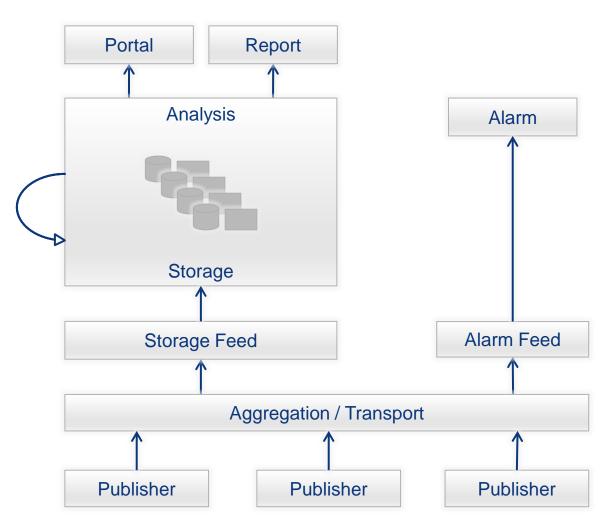
- Dynamic cloud requires dynamic configuration system
- Previous system (Quattor) not dynamic and scalable enough, high maintenance
- Chose *Puppet* as the centre of configuration services
- In addition: PuppetDB, Foreman, mcollective, git
- Currently 17 Puppet servers (including 5 VMs), can be scaled out
 - Serving 8'216 hosts (physical and virtual) as of 02-Apr-2014; 80...150 Git commits to configuration files per week

Configuration (2)

- We know how to scale out further targeting 50k hosts
- Strong emphasis on QA all services to have machines in QA (10% level) for configuration and software installation
- Currently being addressed
 - Security improvements, including handling of secrets
 - Workflow automation, continuous integration
- Some tools written ourselves (e.g. state management)

Configuration (3)

- Most visible part for many service managers
 - Training sessions
 - Improvements to monitoring configuration services
 - Migration out of old tools is a serious issue
 - Maintenance of old tools takes person-power
 - Co-existence of tool sets confusing
 - Agreed target date for complete shutdown: 31 October 2014



Monitoring (1)

- Way too many independent (i.e. partly overlapping, partly different) activities at CERN
- Need for common architecture supporting dynamically adding probes, data stores, data consumers
- Addressing both exception and performance monitoring
- Huge investment into probes to be preserved

Monitoring (2)

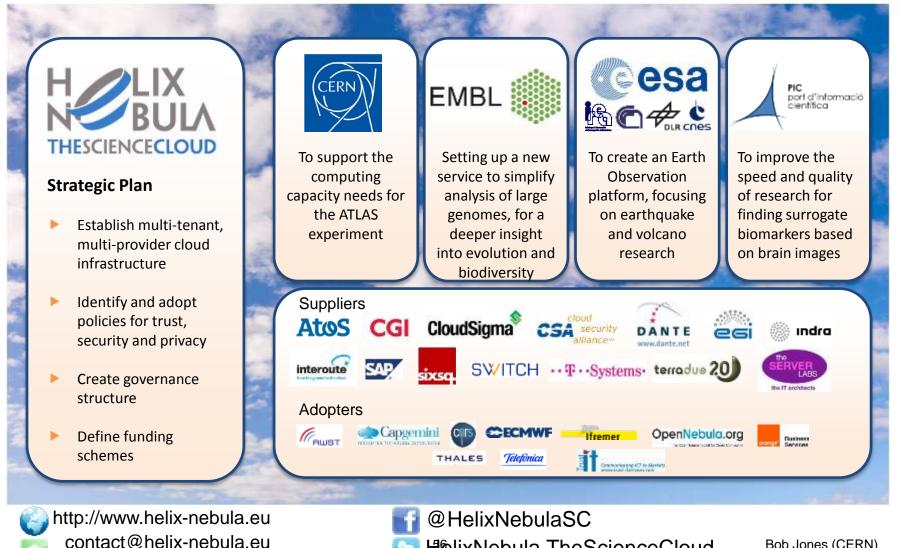
Monitoring (3)

- Technologies chosen:
 - Hadoop
 - ElasticSearch and Kibana
 - Flume
 - ActiveMQ
 - Producers/probes
 - Probes from previous home-grown system
 - SCOM, Spectrum
 - Syslogs, application logs

. . .

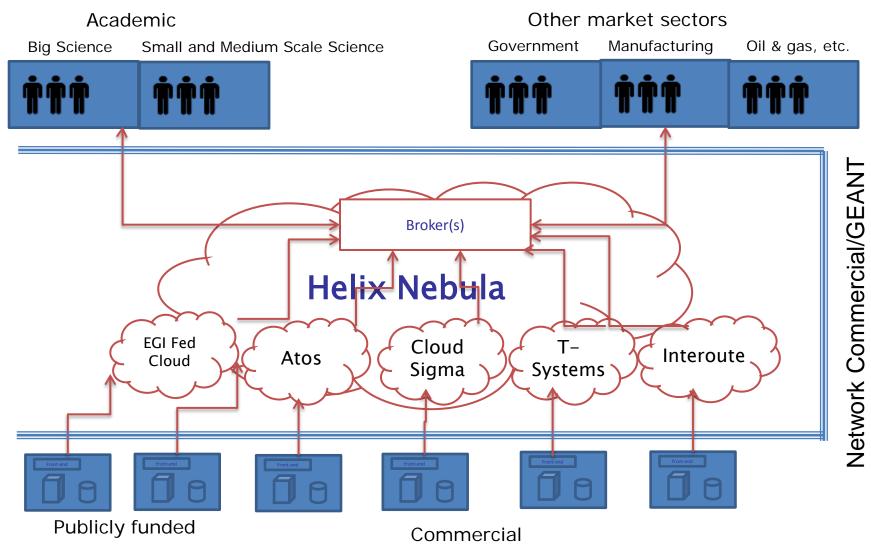
Monitoring (4)

- Notification (alarm) system in production, linked with ticketing system
- Central dashboard
- O (10) of GB of monitoring data per day
- Being worked on: more dashboards, analytics


Extending to Public Clouds: The Helix Nebula project

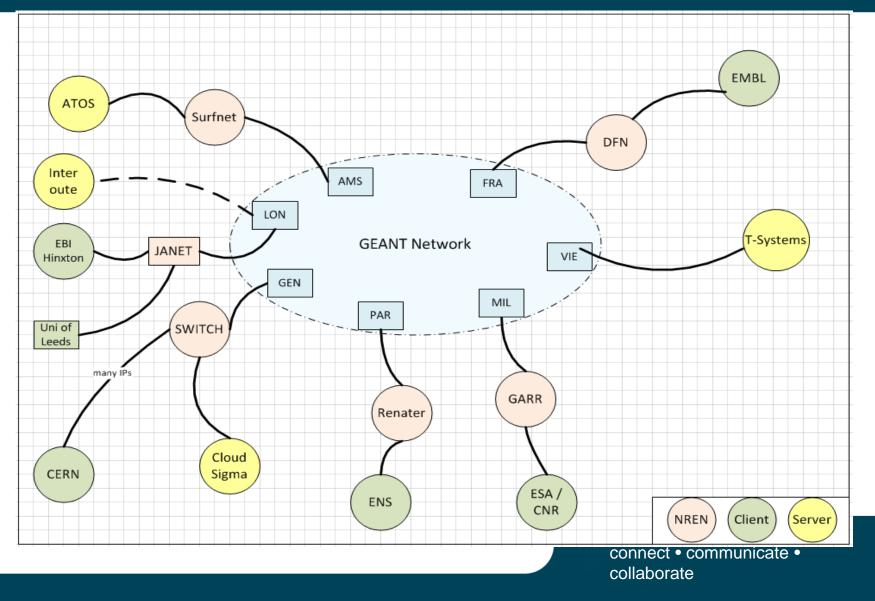
- Aim: develop and exploit cloud computing infrastructure
 - For various European IT-intense research projects (CERN, ESA, EMBL, ...)
 - Extend to enterprises, governments and society later
 - Infrastructure provided by various commercial and public European cloud providers
 - (Slides courtesy of Bob Jones/CERN)

A European cloud computing partnership: big science teams up with big business



HelixNebula.TheScienceCloud

Bob Jones (CERN)


Hybrid Public-Private Cloud Model

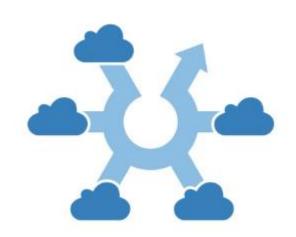
Building the hybrid cloud

Testing the public-commercial cloud interoperability

- Deploy the ESA/CNES/DLR SuperSites Exploitation Platform on EGI Fed Cloud and then the CERN CMS/ATLAS flagship use cases across commercial suppliers and EGI Federated Cloud via a Blue Box broker
- Use the same evaluation criteria adopted for deployment on commercial cloud service suppliers

EGI Federated Cloud

Task Force


- Launched in Sep 2011
- 70 members from 40 institutions and 13 countries

Pre-production test-bed:

- 14 resource centres actively providing resources (900 cores, 16 TB storage)
- 30 active users from structural biology, linguistics, ecology, space science, software engineering

http://go.egi.eu/cloud

Helix Nebula Marketplace (HNX)

- Builds upon the work of the Helix Nebula Initiative and EC support action
- Supported by European cloud providers
- Integrates with existing e-Infrastructures to form a hybrid cloud Market Place and reach out to Europe's research communities
- Trusted cloud services through compliance with EU regulations and legislation

• Simplifies procurement process across multiple services providers

hnx.helix-nebula.eu/

Conclusions (1)

- IT world rapidly changing
- CERN can't follow all changes...
 but every now and then we're catching up
- AI project is very challenging... but also motivating and exciting
- Have gone a long way already... but still a lot of work to do
- Huge amounts of to-do lists with technical items...

but cultural change at least as demanding

Conclusions (2)

• The IT aspects are very interesting and challenging...

but the final objective is physics discoveries at the LHC at its design energies as of 2015

- We're convinced to be on a good way!
- Stay tuned for more physics results from LHC...

Helge.Meinhard (at) CERN ch 40