Cloud Computing for Enabling Big Data Analysis Services

Domenico Talia
DIMES
Università della Calabria & DtoK Lab
talia@dimes.unical.it

SCALab
Scalable Computing & Cloud Laboratory
DtoK LAB

CLOSER 2020
10th International Conference on Cloud Computing and Services Science
Online Streaming 7 - 9 May, 2020
Goals of this talk

- Discuss **how to design** Cloud services for scalable execution of data analysis workflows.
 - Present a programming environment for data analysis: Data Mining Cloud Framework (DMCF).
 - Introduce a visual programming interface **VL4Cloud** and the script-based **JS4Cloud** language for implementing service-oriented workflows.
 - Introduce **Nubytics**: a high-level big data analytics framework.
- Outline some **open research topics**.
Outline

- Big problems and Big data
- Using Clouds for data mining and machine learning
- A collection of services for scalable data analysis
- Data mining workflows
- Data Mining Cloud Framework (DMCF)
- JS4Cloud for programming service-oriented workflows
- Nubytics: a high-level tool for data analytics
- Open Research Topics
- Final remarks
Big is quite a moving target? Some example

- Some data challenges examples we face today
 - Business data produced at a rate of hundreds of gigabits-per-second that must be stored, filtered and analyzed.
 - Millions of images per day that must be mined (analyzed) in parallel.
 - One billion of tweets/posts queried in real-time on an in-memory database.
Big Data needs scalable analysis

- **Volume is only one dimension** of the problem.
- The most important issue is **Value**.
- Scalable data analysis is a key technology to extract **Value** from Big Data.
Big Data needs scalable analysis

Combination of

• **Big data analysis** and **machine learning** techniques with
• **scalable computing systems** for
• an **effective strategy** to obtain new insights in a shorter period of time.

• **Cloud computing** helps!

... the potential interoperability and scaling convergence of HPC computing and data analysis is crucial to the future.

D.A. Reed & J. Dongarra, CACM 2015
Data Analysis as a Service
Data analysis as a service

- For Big Data analysis on Clouds:
 - **PaaS** *(Platform as a Service)* can be *an appropriate model to build frameworks* for designing and executing scalable data mining and machine learning applications.
 - **SaaS** *(Software as a Service)* can be *an appropriate model to allow end users to implement scalable data analysis applications*.

- Those two cloud service models can be effectively specialized for *delivering data analysis tools and applications as services*.
Services for distributed data mining (1)

- Data mining tasks and applications can be offered as high-level services.

- A new way to delivery data analysis software is

 Data Analysis as a Service (DAaaS)
We can design services corresponding to

<table>
<thead>
<tr>
<th>Data Mining Applications and KDD processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>This level includes the previous tasks and patterns composed in multi-step workflows.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distributed Data Mining Patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>This level implements, as services, patterns such as collective learning, parallel classification and meta-learning models.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Single Data Mining Tasks</th>
<th>Single KDD Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Here are included tasks such as classification, clustering, and association rules discovery.</td>
<td>All steps that compose a KDD process such as preprocessing, filtering, and visualization are expressed as services.</td>
</tr>
</tbody>
</table>
This collection of data mining services implements:

- Distributed Data Mining patterns
- Distributed Data Mining Applications and KDD processes
- Data Mining Task Services
- KDD Step Services

Open Service Framework for Distributed Data Mining

This approach supports not only service-based distributed data mining applications, but also

- **Data mining services for communities.**
- Distributed **data analysis services on demand.**
- A sort of **knowledge discovery eco-system** made by a large numbers of decentralized **data analysis services.**

Data analysis services on Cloud make **Big Data mining services accessible every time and everywhere, also remotely and from small devices (microservices).**
Data analysis on Clouds: Systems

SYSTEMS:

- Spark, Mahout, HPC-ABDS, Sphere/sector, CloudFlows, Swift/T... & commercial systems.

DMCF – the Data Mining Cloud Framework supporting Cloud-based data analysis apps as visual and script-based workflows.

Nubytics – an SaaS system for data analysis and machine learning on the Cloud.
The Data Mining Cloud Framework
The Data Mining Cloud Framework supports workflow-based KDD applications, expressed (visually and by a script language) as a graphs that link together data sources, data mining algorithms, and visualization tools.
The Data Mining Cloud Framework: Execution
The Data Mining Cloud Framework: Architecture

- A parallel computing approach distributes the analysis on multiple virtual machines for scalability.

Script-based workflows: JS4Cloud
Script-based workflows

- We extended the visual interface **VL4Cloud** adding **JS4Cloud**, a *script-based data analysis programming model* as a more flexible programming interface.

- Script-based workflows are an effective alternative to graphical programming.

- A script language allows programmers to code complex applications more rapidly, in a *more concise* way and with *higher flexibility*.

- The idea is to offer a script-based data analysis language as an *additional and more flexible programming interface* to skilled users.
The JS4Cloud script language

- **JS4Cloud** (*JavaScript for Cloud*) is a language for programming data analysis workflows.

- Main benefits of JS4Cloud:
 - it is based on Javascript, a well known scripting language, so users **do not have to learn a new language** from scratch;
 - it implements a **data-driven task parallelism** that automatically spawns ready-to-run tasks to the available Cloud resources;
 - it exploits **implicit parallelism** so application workflows can be programmed in a totally sequential way (**no user duties for work partitioning, synchronization and communication**).

JS4Cloud functions

JS4Cloud provides three mechanisms, implemented by the set of functions:

- **Data.get**, for accessing one or a collection of datasets stored in the Cloud;
- **Data.define**, for defining new data elements that will be created at runtime as a result of a tool execution;
- **Tool**, to invoke the execution of a software tool available in the Cloud as a service.

<table>
<thead>
<tr>
<th>Functionality</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Access</td>
<td>Data.get(<dataName>);</td>
<td>Returns a reference to the data element with the provided name.</td>
</tr>
<tr>
<td></td>
<td>Data.get(new RegExp(<regular expression>));</td>
<td>Returns an array of references to the data elements whose names match the regular expression.</td>
</tr>
<tr>
<td>Data Definition</td>
<td>Data.define(<dataName>);</td>
<td>Defines a new data element that will be created at runtime.</td>
</tr>
<tr>
<td></td>
<td>Data.define(<arrayName>,<dim>);</td>
<td>Define an array of data elements.</td>
</tr>
<tr>
<td></td>
<td>Data.define(<arrayName>,[<dim_1>,..,<dim_n>]);</td>
<td>Define a multi-dimensional array of data elements.</td>
</tr>
<tr>
<td>Tool Execution</td>
<td><toolName>(<par_1>:<val_1>,...,<par_n>:<val_n>);</td>
<td>Invokes an existing tool with associated parameter values.</td>
</tr>
</tbody>
</table>
Script-based applications

- Code-defined workflows are fully equivalent to graphically-defined ones:

```javascript
// app parameters
var minNumObjList = [2, 5], confidenceList = fromToBy(0.1, 0.5, 0.1);
var dim = minNumObjList.length * confidenceList.length;

var Dataset = Data.get("USCensus");
var TrainSet = Data.define("TrainSet");
var TestSet = Data.define("TestSet");

// workflow
PartitionerIT((
    dataset: Dataset,
    percTrain: 70, arffFile: true,
    trainSet: TrainSet,
    testSet: TestSet
));

var Model = Data.define("Model", dim);
for (var i = 0; i < dim; i++) {
    var conf = 0;
    for (var mno = 0; mno < minNumObjList.length; mno++) {
        J48(
            [dataset: TrainSet, model: i, confidence: conf, minNumObj: mno]
        );
    }
}

var ClassTestSet = Data.define("ClassTestSet", Model.length);
for (var i = 0; i < Model.length; i++) {
    Classifier(
        [dataset: TestSet, model: i, classColumn: 0, classDataset: ClassTestSet[i]]
    );
}
```
JS4Cloud patterns

Pipeline

```javascript
var DRef = Data.get("Census");
var SDRef = Data.define("SCensus");
Sampler({input:DRef, percent:0.25, output:SDRef});
var MRef = Data.define("CensusTree");
J48({dataset:SDRef, confidence:0.1, model:MRef});
```
JS4Cloud patterns

Parameter sweeping

```javascript
var TRef = Data.get("TrainSet");
var nMod = 5;
var MRef = Data.define("Model", nMod);
var min = 0.1;
var max = 0.5;
for(var i=0; i<nMod; i++)
    J48({dataset:TRef, model:MRef[i],
        confidence:(min+i*(max-min)/(nMod-1))});
```
var nMod = 16;
var MRef = Data.define("Model", nMod);
for(var i=0; i<nMod; i++)
 J48({dataset:TsRef[i], model:MRef[i],
 confidence:0.1});
Parallelism exploitation

var DRef = Data.get("Census");
var TrRef = Data.define("TrainSet");
var TeRef = Data.define("TestSet");
var min = 0.1, max = 0.5; nMod = 10;
var MRef = Data.define("Model", nMod);
var BRef = Data.define("BestModel");

PartitionerTT([dataset:DRef, percTrain:0.70, trainSet:TrRef, testSet:TeRef]);
for(int i=0; i<nMod; i++)
 J48([dataset:TrRef, model:Model[i], confidence:(min+i*(max-min)/(nMod-1))]);
ModelSelector([testSet:TeRef, model:Model, bestModel:BRef]);
Monitoring interface

- A snapshot of the application during its execution monitored through the programming interface.
Example applications (1)

Finance: Prediction of personal income based on census data

E-Health: Disease classification based on gene analysis

Networks: Discovery of network attacks from log analysis.
Example applications (2)

Biosciences: drug metabolism associations in pharmacogenomics.

Smart City: Car trajectory pattern detection applications.
KDDCup99 example

- Input dataset: 46 million tuples
- Used Cloud: up to 64 virtual servers (single-core 1.66 GHz CPU, 1.75 GB of memory, and 225 GB of disk)

```java
1: var n = 64;
2: var DRef = Data.get("KDDCup99_5GB"),
   TrRef = Data.define("TrainSet"),
   TeRef = Data.define("TestSet");
3: PartitionerTT({dataset:DRef, percTrain:0.7,
                   trainSet:TrRef, testSet:TeRef});
4: var PRef = Data.define("TrainsetPart", n);
5: Partitioner({dataset:TrRef, datasetPart:PRef});
6: var MRef = Data.define("Model", n);
7: for(var i=0; i<n; i++)
8:   J48({dataset:PRef[i], model:MRef[i],
       confidence:0.1});
9: var CRef = Data.define("ClassTestSet", n);
10: for(var i=0; i<n; i++)
11:   Classifier({dataset:TeRef, model:MRef[i],
                  classDataset:CRef[i]});
12: var FRef = Data.define("FinalClassTestSet");
13: Voter({classData:CRef, finalClassData:FRef});
```
Turnaround and speedup

107 hours (4.5 days)

2 hours

50.8

7.6
Efficiency

![Graph showing efficiency vs. number of servers]

- Efficiency values: 0.96, 0.9, 0.8
- Number of servers: 1, 8, 16, 32, 64

The graph illustrates the decrease in efficiency as the number of servers increases.
Trajectory pattern detection

- Analyze trajectories of mobile users to discover movement patterns and rules.
- A workflow that integrates frequent regions detection, trajectory data combination and trajectory pattern extraction.
Workflow implementation

- DMCF visual workflow implementing the trajectory pattern detection algorithm
 - Some nodes are labeled by the array notation
 - Compact way to represent multiple instances of the same dataset or tool
 - Very useful to build complex workflows (data/task parallelism, parameter sweeping, etc.)

Discovered dense regions on the Beijing map
Experimental evaluation

Turnaround time
- vs the number of servers (up to 64), for different data sizes
- vs several data sizes (up to 128 timestamps), for different number of servers

- comparison parallel/sequential execution
- D_{16} (D_{128}): it reduces from 8.3 (68) hours to about 0.5 (1.4) hours
- it proportionally increases with the input size
- it proportionally decreases with the increase of computing resources
Experimental evaluation

Speedup

![Graph showing speedup with number of servers on the x-axis and speedup on the y-axis, indicating a linear relationship with a slope of approximately 1.135 on 128 servers.]

SPEEDUP: 113.5 on 128 servers.
Nubytics

- **SaaS** for data analysis and prediction on the Cloud
- **Nubytics** allows users to **import data** into the Cloud, **extract knowledge models** using high performance **data mining services**, and use the inferred knowledge to **predict new data**
- **Nubytics** provides **data classification** and **regression services** that can be used in a variety of scientific and business applications
- **Scalability** is ensured by a **parallel computing approach** that fully exploits the resources available on the Cloud.
- **Available** at **www.nubytics.com**
Main features

- Importing and managing datasets on the Cloud
- Creating models from data using high-performance classification and regression algorithms
- Using the inferred models to predict new data
The Nubytics front end is divided into three sections

- Datasets
- Tasks
- Models

These sections correspond to the three groups of services provided by the system:

- dataset management,
- task management and
- model management.
Services (2/2)
Cloud environment: **128 virtual servers** provided by Microsoft Azure, each one equipped with a single-core Intel Xeon E5-2660 2.2GHz CPU, 3.5GB of memory, and 50GB of disk space.

The input dataset used for the experiments has been generated from the Census-Income Database. From the original dataset, we generated an input dataset containing **4.4 million instances** with a total size of about **2.097 GB**.

The goal of the classification task on this dataset is to **train a knowledge model**, that can be used to **predict the income level** for a person described by the attributes.
The time required to execute the entire task strongly decreases as the number of computing resources increases.

Fig. 7. Turnaround time vs number of servers.
The speedup is almost linear up to 32 virtual servers and maintains a very good trend for higher number of nodes (about 108 on 128 cores).

Fig. 8. Speedup vs number of servers.
Open Issues & Remarks
Scalable Data analysis: Open Research Issues

• **Programming abstracts for big data analytics.**
 MapReduce and the workflow models are often used, but more research work is needed to develop other scalable, **adaptive, general, higher-level** abstract programming structures & tools.

• **Data and tool integration and openness.**
 Code coordination and data integration are main issues in large-scale applications that use data and computing resources. **Standard formats, data exchange models** and common APIs are needed.

• **Interoperability of big data analytics frameworks.**
 Large and worldwide federation and integration of multiple data analytics frameworks and services are needed.
A significant programming effort of developers will be needed to implement scalable complex mining algorithms and data-driven applications such that used, for example, in big data analysis and distributed data mining.

Parallel and distributed data mining strategies, like
- collective learning,
- parallel clustering,
- meta-learning, and
- ensemble learning,
must be re-designed using parallel and decentralized approaches to be adapted to Cloud and Exascale systems.
Some Books

Some papers

Final remarks

- Data mining and machine learning tools are crucial to support processes finding what is interesting and valuable in Big Data.
- Cloud computing systems can effectively be used as scalable platforms for service-oriented data mining.
- Design and programming tools are needed for simplicity and scalability of complex data analysis processes.
- Tools like DMCF and Nubytics support users in implementing and running scalable Big data mining applications.
Questions?

Thanks