

5/19/21

Types of Machine Learning

SUPERVISED 95% of ML

Task Driven

predict next value, classification

0123456789 0123456789 0123456789 0123456789 **UNSUPERVISED**

Data Driven

Identify clusters

REINFORCEMENT

Learn From Mistakes

Trial and Error

Al success Stories virtually no area that does not (plan to) use Al

https://medium.com/syncedreview/2018-in-review-10-ai-failures-c18faadf5983

Al failures 2018

GLOBAL HEADCOUNT

■ Male ■ Female

Amazon Al recruiting tool is gender biased

EMPLOYEES IN TECHNICAL ROLES

https://www.reuters.com/article/us-amazon-com-jobs-automation-ins

Al failures 2018

Al World Cup 2018 - predictions almost all wrong ©

Why these failures?

2021-05-19

New questions in Al Development

Non technical character

- Who is owner of data?
- What are the ethical aspects of using data?
- What can we allow a machine to decide?
- How do interpret the results from AI models?

Technical nature

- How to efficiently collect, store, process, analyse, and present data?
- How to efficiently build the AI-based systems?
- How to ensure enough resources (computation, storage, timing)
- How to ensure dependability/trustworthy of such systems?
- What system and software architecture are required for AI-systems?
- WHAT KIND OF SOFTWARE ENGINEERING SUPPORT IS NEEDED?

5/19/21 11

ML Development cycle

5/19/21 12

Life cycle

Machine Learning: The High-Interest Credit Card of Technical Debt, D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary, M. Young

Architecture of a car control system

Complex services

distributed components

Challenges:

- Real-time requirements
- Shared resources
- Resource constraints

Shared resources

Software architecture

17

Component-based and service-based approach

- Components
 - Encapsulation of data
 - Encapsulation of functionality
 - Dependency between components defined and controlled

5/19/21

Al-System - system architecture (example)

Components – black boxes

- Components
 - Encapsulation of AI-based functionality
 - Dependency between components defined and controlled
 - What about AI code and data?

5/19/21

With AI the existing architecture is not feasible

Challenges

- New computation models
- Heterogenous platform
- Edge sensor vs. edge centralized level vs. cloud computing
- Development process
 - separation of training process from operational process
 - New monitoring
 - New quality attributes and their metrics
 - Migration process from the existing architecture

brake

Sensor Actuator

ECU

Cloud

computing

Al- based components – fundamental problems

- The results depend not only on the algorithms and controlled data but also on uncontrolled/unknown data
- The Al-based functions are not continuous: small change of data can cause big changes

Due to data impact on the model many new challenges appear

5/19/21 22

Examples of Data-related challenges

1. Entanglement (Data fusion)

- 2. Data dependencies
 - Unstable data dependencies
 - Underutilized Data Dependencies

- 3. Hidden Feedback Loops
- 4. Undeclared Consumers

System-design anti-patterns (1)

- Heterogeneity of data (different formats, accuracy, semantics) and use of standard ML functions require a lot Glue code
 - 95% of code in AI-based systems is a glue-code (empirical data)
 - Requires
 - Frequent refactoring of code
 - Re-implementing AI models

Pipeline Jungles

- ML-friendly format data become a jungle of scrapes, joins, and sampling steps, intermediate files
 - Requires a close team work of data and domain engineers

5/19/21

System-design anti-patterns (2)

Dead Experimental Code paths

- Al solution requires a lot of experimentation
- A lot of code that will not be used later
- Problems
 - Dead code

 Version management – how to preserve useful configuration branches, and remove unnecessary

Managing Changes in the External World

Requirements: Continuous monitoring of data and system. Continuous test.

Study: Overview of industrial ML systems

Which challenges are the most difficult in development of Al-based systems?

Case studies

- A. Project EST: Real Estate Valuation
- B. Project OIL: Predicting Oil and Gas Recovery Potential
- C. Project RET: Predicting User Retention
- D. Project WEA: Weather Forecasting
- E. Project CCF: Credit Card Fraud Detection
- F. Project BOT: Poker Bot Identification
- G. Project REC: Media Recommendations

Study: Engineering challenges of DL

Hard to solve

- Dependency Management
- Troubleshooting
- Testing
- Development challenges
- Production/operation challenges
- Organisational challenges

■ Cultural differences

Effort estimation

◆Glue code and supporting systems

Resource Limitations

Privacy and Safety/security

Limited transparency

Unintentional feedback loops

Experimental management

Monitoring and logging

Lower business impact

Easier to solve

High business impact

The challenges in evolution of development and use ML components

	Experiment prototyping	Non-critical deployment	Critical deployment	Cascading deployment
Assemble dataset	Issues with problem formulation and specifying desired outcome	Data silos, scarcity of labelled data, imbalanced training set	Limitations in techniques for gathering training data from large-scale, non-stationary data streams	Complex and effects of data dependencies
Create model	Use of non- representative dataset, data drifts	No critical analysis of training data	Difficulties in building highly scalable ML pipeline	Entanglements causing difficulties in isolating improvements
Train and evaluate model	Lack of well-established ground truth	No evaluation of models with business-centric measures	Difficulties in reproducing models, results and debugging DL models	Need of techniques for sliced analysis in final model
Deploy model	No deployment mechanism	Training- serving skew	Adhering to stringent serving requirements e.g., of latency, throughput	Hidden feedback-loops and undeclared consumers of the models

LE Lwakatare, A Raj, J Bosch, HH Olsson, I Crnkovic, <u>A taxonomy of software engineering challenges for machine learning systems:</u> <u>An empirical investigation</u> - International Conference on Agile Software ..., 2019

cases	identified problems		strategic focus
Real Estate Valuation Predicting Oil and Gas Recovery Predicting User Retention Weather Forecasting	Lack of labelled data Lack of metadata Shortage of diverse samples Heterogeneity in data Data granularity Imbalanced data sets	Data drift Data dependencies Managing categorical data Managing sequences in data Deduplication complexity Data streams for training	data quality management
Credit Card Fraud Detection Poker Bot Identification Media Recommendations Sensor data (automotive) Sentiment analysis	Experiment management Dependency management Unintended feedback loops Effort estimation Cultural differences Specifying desired outcome	Lack of modularity Sharing and tracking techn. Reproducibility of results Data extraction methods Tooling	design methods and processes
Manufacturing optimization Training data annotation Failure prediction (telecom) OoO reply analysis	Overfitting Scalable ML pipeline Quality attributes Statistical Understanding	Limited transparency Training/serving skew Sliced analysis of final model	model performance
Search engine optimization Wind power prediction Skin lesion classification	Monitoring and Logging Testing Troubleshooting Data sources and distribution Glue code and support	Privacy and data safety Data silos Data storage Resource limitations	deployment & compliance

J Bosch, H Holmström Olsson, I Crnkovic: Engineering Al Systems A Research Agenda (arXiv:2001.07522, 2020 preprint)

Al Engineering challenges

Strategic focus Infrastucture Development **Process** Data versioning & Data quality Automated data dependency DataOps/DevOps management labeling mgmt Design Federated Reuse of pre-Manage multiple methods and learning developed ML models processes infrastructure models Storage and Model A/B testing of computing Quality attributes performance models infrastructure Deployment Integration of Deployment Monitoring & models and SW and infrastructure logging compliance components

Domain-specific AI Engineering challenges

J Bosch, H Holmström Olsson, I Crnkovic: Engineering Al Systems A Research Agenda, arXiv:2001.07522, 2020 preprint)

Example – Process integration

Conceptual ML Workflow and DevOps Process Integration

DM – Data Management

Mod – ML Modeling

Dev – Development

Ops – System Operation

CHALMERS
UNIVERSITY OF TECHNOLOGY