

Experimental Computer Science Approaches and instruments

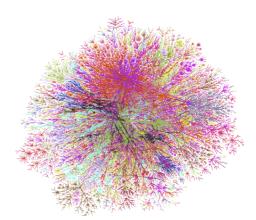
F. Desprez

INRIA Grenoble Rhône-Alpes, LIP ENS Lyon, Team Avalon

Joint work with E. Jeannot, A. Lèbre, D. Margery, L. Nussbaum, C. Perez, O. Richard

"One could determine the different ages of a science by the technic of its measurement instruments"

Gaston Bachelard The Formation of the scientific mind


Agenda

- Experimental computer Science
- Overview of GRID'5000
- GRID'5000 Experiments
- Related Platforms

F. Desprez - Closer 2012

14/04/12 - 3

EXPERIMENTATION FOR DISTRIBUTED SYSTEMS

The discipline of computing: an experimental science

The reality of computer science:

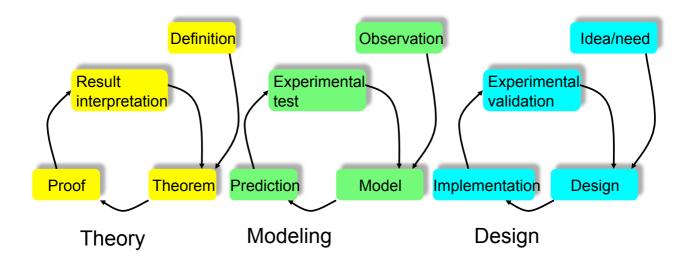
-information

-computers, network, algorithms, programs, etc.


Studied objects (hardware, programs, data, protocols, algorithms, network): more and more complex.

Modern infrastructures:

- Processors have very nice features
 - Cache
 - Hyperthreading
 - Multi-core
- Operating system impacts the performance
- (process scheduling, socket implementation, etc.)
- The runtime environment plays a role
- (MPICH≠OPENMPI)
- Middleware have an impact (Globus≠GridSolve)
- Various parallel architectures that can be:
 - Heterogeneous
 - Hierarchical
 - Distributed
 - Dynamic



F. Desprez - Closer 2012

Three paradigms of computer science

Three feedback loops of the three paradigm of CS [Denning 89], [Feitelson 07]

Experimental culture: great successes

Experimental computer science at its best [Denning1980]:

- Queue models (Jackson, Gordon, Newel, '50s and 60's). Stochastic models validated experimentally
- Paging algorithms (Belady, end of the 60's). Experiments to show that LRU is better than FIFO

Performance Analysis: Experimental Computer Science at Its Best

Peter J. Denning

is experimental computer that This question has been line to the second second second second second provide the second second second second provide second second second second second and the second second second second second all the noncherretical activproperties i.es, computer sites, conditional second second second second all the noncherretical activproperties i.es, computer sites, consecond second second second second all the noncherretical activproperties i.es, computer sites, conditional second second second second and second second second second second definition syst evaluable. definition is yet evaluable and second second second second second meets these standards and the host exattaries of the second secon The result of one may be a model shavier, by impler spaparatus for a string bern. This store. The spaparatus of a spaparatus, tor a spaparatus, to spaparatus, to spaparatus, to spapar

starting point for future lines of inversignator. This example illustrates how spetraday's theorems can become townerow's definitions. The M4/44X Project The M4/44X project was conducted at the IBM Ensemble Center in Yorktoon Helphy, N.Y., in the middle 1960b, Its purpose was to evaluate the emerging concepts of time-sharing systems by reducing them to practice and measuring them. The central principle of its architecture was as of virtual mar-

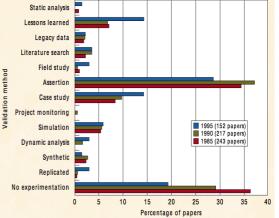
archinectore was a set or vituat machines, one for each user. The maimachine was an IBM 7044 (M44 for short) and each vitual machine wa an experimental image of the 704 (44X for short). Vitual memory an multiprogramming were used to im plement the address spaces of th 44Xs in the memory hierarchy of th M44. This machine served as th

13/04/12 - 7

F. Desprez - Closer 2012

Experimental culture not comparable with other science

Different studies:


- In the 90's: between 40% and 50% of CS ACM papers requiring experimental validation had none (15% in optical engineering) [Lukovicz et al.]
- *"Too many articles have no experimental validation"* [Zelkowitz and Wallace 98]:

612 articles published by IEEE.

• Quantitatively more experiments with times

Computer science not at the same level than some other sciences:

- Nobody redo experiments (no funding)
- · Lack of tool and methodologies

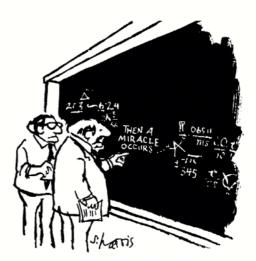
M.V. Zelkowitz and D.R. Wallace. Experimental models for validating technology. Computer, 31(5):23-31, May 1998.

Computer Science Experiments

Many domains:

- Complex system modeling and algorithm design (clouds, parallel machines, modern processors, network)
- Bio-informatics and others sciences (geology, atmosphere, etc.)
- Computer-System Security (virus)
- Human–computer Interaction (HCI)
- Computational linguistic
- Etc.

"Good experiments"


A good experiment should fulfill the following properties

- **Reproducibility**: *must* give the same result with the same input
- Extensibility: *must* target possible comparisons with other works and extensions (more/other processors, larger data sets, different architectures)
- **Applicability:** *must* define realistic parameters and *must* allow for an easy calibration
- "Revisability": when an implementation does not perform as expected, must help to identify the reasons

Analytic modeling

Purely analytical (mathematical) models

- Demonstration of properties (theorem)
- Models need to be tractable: oversimplification?
- Good to understand the basic of the problem
- Most of the time ones still perform a experiments (at least for comparison)

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO."

For a practical impact (especially in distributed computing): analytic study not always possible or not sufficient

F. Desprez - Closer 2012

Experimental Validation

A good alternative to analytical validation

- Provides a comparison between algorithms and programs
- Provides a validation of the model or helps to define the validity domain of the model

Several methodologies

- Simulation (SimGrid, NS, ...)
- Emulation (MicroGrid, Wrekavoc, ...)
- Benchmarking (NAS, SPEC, Linpack,)
- Real-scale (Grid'5000, FutureGrid, OpenCirrus, PlanetLab, ...)

Properties of methodologies

Enabling good experiments:

Control:

- essential to know which part of the model or the implementation are evaluated
- · allows testing and evaluating each part independently

Reproducibility:

- base of the experimental protocol
- Ensured experimental environment

Realism:

- Experimental condition: always (somehow) synthetic conditions
- · Level of abstraction depends on the chosen environment
- Three levels of realism:
 - **1.** Qualitative: experiment says $A_1 \ge A_2$ then in reality $A_1 \ge A_2$
 - 2. Quantitative: experiment says $A_1 = k^*A_2$ then in reality $A_1 = k^*A_2$
 - 3. Predictive.
- Problem of validation

Inría

F. Desprez - Closer 2012

Simulation

Simulation: predict parts of the behavior of a system using an

approximate model

- Model = Collection of attributes + set of rules governing how elements interact
- · Simulator: computing the interactions according to the rules

Models wanted features

- · Accuracy/realism: correspondence between simulation and real-world
- · Scalability: actually usable by computers (fast enough)
- Tractability: actually usable by human beings (understandable)
- "Instanciability": can actually describe real settings (no magic parameters)

 \Rightarrow Scientific challenges

H. Casanova, A. Legrand and M. Quinson. SimGrid: a Generic Framework for Large-Scale Distributed Experiments. 10th IEEE International Conference on Computer Modeling and Simulation, 2008.

Emulation

Emulation: executing a real application on a model of the environment

Two approaches

- Sandbox/virtual machine: confined execution on (a) real machine(s). syscall catch. Ex: MicroGrid
- Degradation of the environment (to make it heterogeneous): direct execution. Ex: Wrekavoc/distem

F. Desprez - Closer 2012

13/04/12 - 15

Benchmark

Synthetic application

- Test workload
- Model of a real application workload
- Shared by other scientists
- Do not care for the output (e.g. random matrix multiplication).

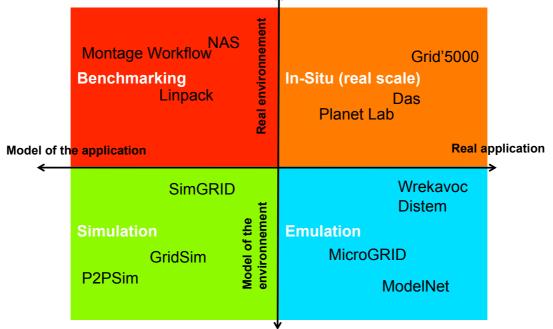
Classical benchmark

- NAS parallel benchmarks (diff. kernels, size and class).
- Linpack (Top 500)
- SPEC
- Montage workflow
- Archive
 - Grid Workload archive (GWA) Failure trace archive (FTA)

In-situ/Real scale

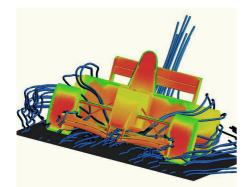
Real application executed on real (dedicated) hardware/environment

Challenges


- Configuration
- "Genericity"
- Experiment cycle time
- · Ease of use
- Cost, availability

F. Desprez - Closer 2012

A unified Taxonomy [GJQ09]


Warning: running a benchmark on an emulator is different than doing a simulation

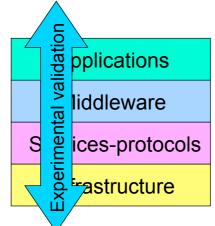
J. Gustedt, E. Jeannot and M. Quinson **Experimental Methodologies for Large-Scale Systems: a Survey.** PPL, 19(3):399–418, September 2009

Experimentation for distributed systems

Simulation

- 1. Model application
- 2. Model environment
- 3. Compute interactions

Real-scale experiments


Execute the real application on real machines

Complementary solutions

Work on algorithms Scalable, more user friendly Work on applications Closer to production use

Environment Stack

Research issues at each layer of the stack

- algorithms
- software
- data
- models
- ...

Problem of experiments

- Testing and validating solutions and models as a scientific problematic
- Questions:
 - what is a good experiment ?
 - which methodologies and tools to perform experiments?
 - advantages and drawbacks of these methodologies/tools?

Shared/Common Testbeds (i.e. prod. Grids)

Not designed for long term exclusive access for a project

- Difficult to use as a always on demonstrator of your work
- But if the testbed is not well established, difficult to use to prove your point

Not tailored to specific needs

- Always a setup cost, and an adaptation cost as the facility evolves
- A compromise must be found to ensure setup cost stays small in respect to usage time

Are themselves subject to research

• The gap between an abstract description of the testbed needed by a particular project and a concrete implementation on one testbed has not been bridged yet

Experiment-driven research has a lot of benefits, but also a cost for the

researcher

• Experiments have to be planned and well thought out

F. Desprez - Closer 2012

13/04/12 - 21

GRID'5000

www.grid5000.fr/

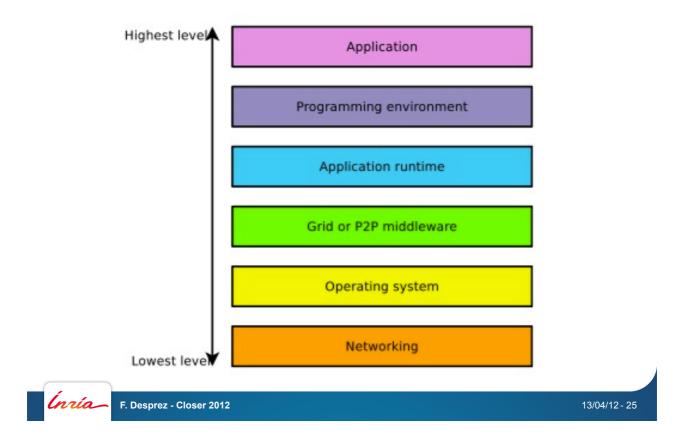
GRID'5000

Testbed for research on distributed systems

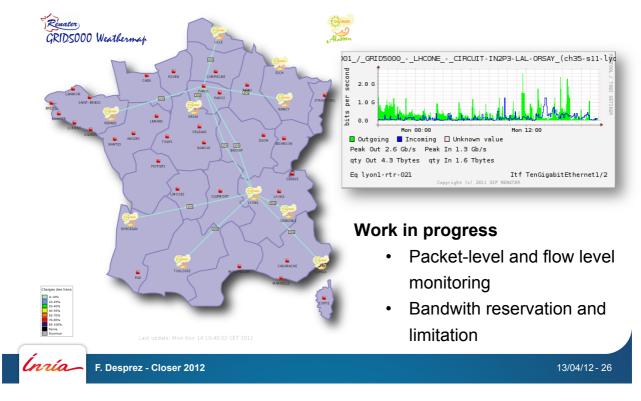
- Born from the observation that me need a better and larger testbed
- High Performance Computing, Grids, Peer-to-peer systems, Cloud computing
- A complete access to the nodes' hardware in an exclusive mode (from one node to the whole infrastructure)
- RlaaS : Real Infrastructure as a Service ! ?
- History, a community effort
 - 2003: Project started (ACI GRID)
 - 2005: Opened to users
- Funding
 - Inria, CNRS, and many local entities (regions, universities)
- One rule: only for research on distributed systems
 - $\bullet\!\rightarrow$ no production usage
 - Free nodes during daytime to prepare experiments
 - · Large-scale experiments during nights and week-ends

Ínría

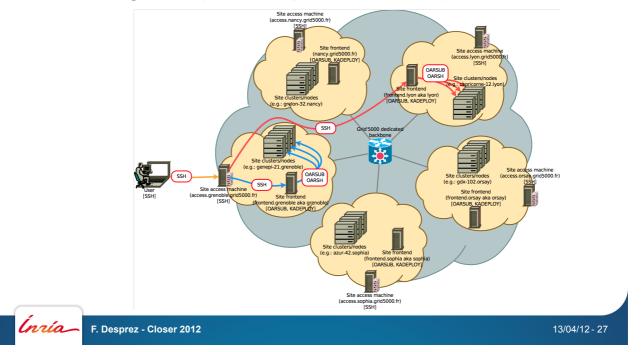
F. Desprez - Closer 2012


Current Status

- 11 sites (1 outside France)
 - New sites are joining the infrastructure (Nantes, Porto-Allegre)
- 26 clusters
- 1700 nodes
- 7400 cores
- Diverse technologies
 - Intel (60%), AMD (40%)
 - CPUs from one to 12 cores
 - Myrinet, Infiniband {S, D, Q}DR
 - Two GPU clusters
- More than 500 users per year



A Large Research Applicability


Backbone Network

Dedicated 10 Gbps backbone provided by Renater (french NREN)

Using GRID'5000: User's Point of View

- Key tool: SSH
- Private network: connect through access machines
- **Data storage:** NFS (one server per GRID'5000 site)

GRID'5000 Software Stack

- Resource management: OAR
- System reconfiguration: Kadeploy
- Network isolation: KaVLAN
- Monitoring: Ganglia, Kaspied, Energy
- Putting all together GRID'5000 API

Resource Management: OAR

Batch scheduler with specific features

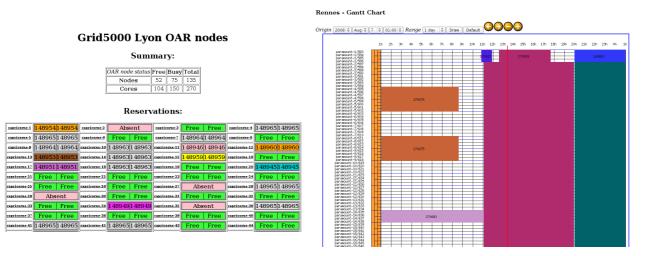
- interactive jobs
- advance reservations
- powerful resource matching

Resources hierarchy

- cluster / switch / node / cpu / core
- Properties
 - memory size, disk type \& size, hardware capabilities, network interfaces, ...
- · Other kind of resources: VLANs, IP ranges for virtualization

I want 1 core on 2 nodes of the same cluster with 4096 GB of memory and

Infiniband 10G + 1 cpu on 2 nodes of the same switch with dualcore processors for a walltime of 4 hours ...

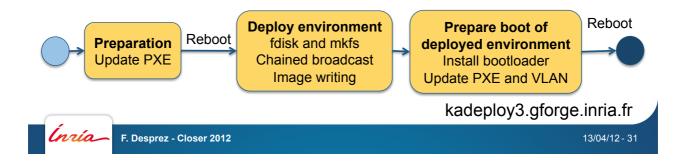

oarsub -I -I "memnode=4096 and ib10g='YES'}/cluster=1/nodes=2/core=1 + {cpucore=2}/switch=1/nodes=2/cpu=1,walltime=4:0:0"

+ {cpucore=2}/switch=1/houes=2/cpu=1,walling

Inría F. Des

F. Desprez - Closer 2012

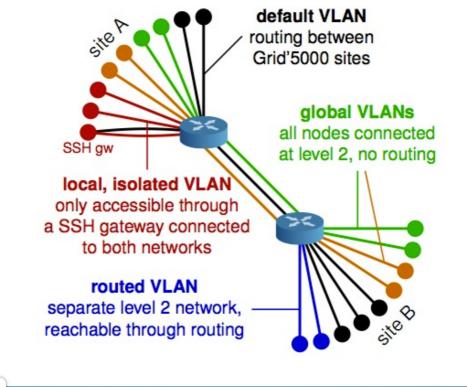
Resource Management: OAR, Visualization



Resource status

Gantt chart

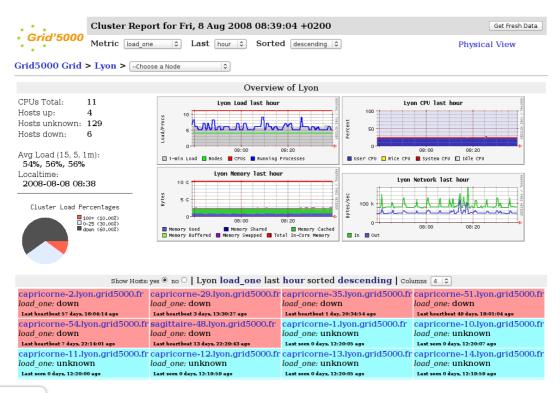
Kadeploy – Scalable Cluster Deployment Tool


- Provides a Hardware-as-a-Service Cloud infrastructure
- Built on top of PXE, DHCP, TFTP
- Scalable, efficient, reliable and flexible
 - Chain-based and BitTorrent environment broadcast
- 255 nodes deployed in 7 minutes (latest scalability test 4000 nodes)
- Support of a broad range of systems (Linux, Xen, *BSD, etc.)
- Command-line interface & asynchronous interface (REST API)
- Similar to a cloud/virtualization provisionning tool (but on real machines)
- Choose a system stack and deploy it over GRID'5000 !

Network Isolation: KaVLAN

- Reconfigures switches for the duration of a user experiment to complete level 2 isolation
 - Avoid network pollution (broadcast, unsolicited connections)
 - Enable users to start their own DHCP servers
 - Experiment on ethernet-based protocols
 - Interconnect nodes with another testbed without compromising the security of Grid'5000
- Relies on 802.1q (VLANs)
- Compatible with many network equipments
 - Can use SNMP, SSH or telnet to connect to switches
 - Supports Cisco, HP, 3Com, Extreme Networks, and Brocade
- · Controlled with a command-line client or a REST API

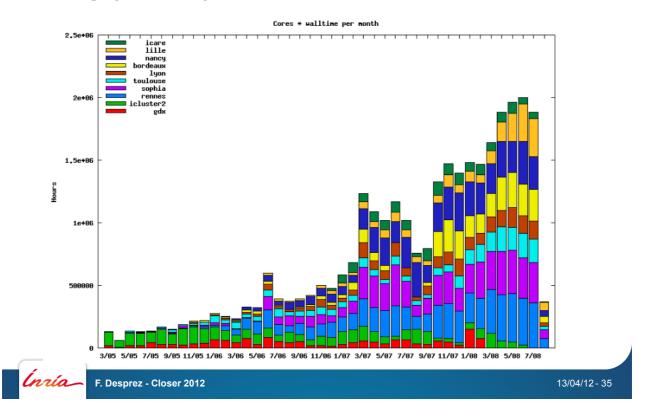
Network Isolation: KaVLAN, cont

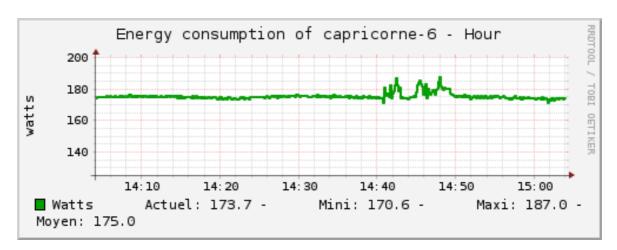


F. Desprez - Closer 2012

13/04/12-33

Monitoring, Ganglia




Monitoring, Kaspied

Usage per month per cluster

(GRID'5000 usage over time)

Monitoring, Energy

Power consumption

Putting it all together: GRID'5000 API

· Individual services & command-line interfaces are painful

REST API for each Grid'5000 service

- Reference API: versioned description of Grid'5000 resources
- Monitoring API: state of Grid'5000 resources
- Metrology API: Ganglia data
- · Jobs API: OAR interface
- Deployments API: Kadeploy interface

• . . .

	Oal	r Gri	d	[[Grid	experi	iment	11	Deploy [[Deploy_environment-OAR2	
* * SSh [[External_Access]	Discoverin	ig resou	irces J	obs Grid				Locate a suitable image Use deploy type for your jo	
~/.ssh/config ost g5k	disco cluster disco site1 s		oargridstat oargridstat GRID JOB ID				kaenv3 -l oarsub -I -t deploy -l nodes		
Hostname access.lille.grid5000.fr User g5k login			barghustat GRID_JOB_ID				kaenv3 -l -u LOGIN cat \$OAR_NODE_FILE kaenv3 -p squeeze-x64-base -u deploy		
IdentityFile -/.ssh/id dsa ssh nancy.g5k	oargridsub	Submission : Interactive oargridsub -t allow classic ssh \						Kaenvo -p squeeze-kow-base -u deptoy	
ssh edel-1.grenoble.g5k scp ~/foo rennes.g5k:bar/		<pre>-w '0:20:00'CLUSTER1:rdef="/nodes=2",CLUSTER2:rdef="/nodes=3" Create a node file</pre>						Deploy an environment	
User g5k login	oargridsta	-w -l	GRID_JOB_ID sed ',	/^\$/d' > -	-/nodes	kadeploy3 -e squeeze-x64-base -m node.site.grid5000.fr kadeploy3 -e squeeze-x64-base -f SOAR.NOBE_FILE with your ssh key (for a connection without password) kadeploy3 -e eny-x64-base -f SOAR.NODE_FILE -k -/.ssh/key.pr kadeploy3 -e squeeze-x64-min -f SOAR.NODE_FILE -k			
ProxyCommand ssh g5k "nc -q 0 `basename %h .g5k` %p"	Distribute		JOB ID oarcp -i\						
kt in color MUST to be substitued by appropriate value	s /tmp/oar]rid∕oar	grid_ssh_key_LOGIN_	GRID_JOB_1	D~/mach				
	`head -n Connect on	1 machi	nes`: de					Save your deployed environment with tgz-g5k	
Dar Cluster [[Cluster_experiment]]	OAR JOB ID	OAR_JOB_ID=CLUSTER_JOB_ID oarsh -i \ /tmp/oargrid/oargrid ssh key LOGIN GRID JOB ID ` head -n 1 machines`						(available on gforge, or installed on environments)	
obs states Nodes states		grid∕oar	grid_ssh_key_LOGIN_	GRID_JOB_1	(D hea	<pre>tgz-g5k login@frontend:image.tgz (from node) ssh root@node tgz-g5k > image.tgz (from frontend)</pre>			
parstat oarnodes parstat -f -j JOB_ID oarnodessql "cpucore='4'"	Ending oargriddel GRID JOB ID								
barstat -u G5K_LOGIN	Submission : Reservation (passive mode)							Connection to the deployed environment ssh root@node.site.grid5000.fr (password "grid5000")	
ubmission : Interactive Reserve IPs	<pre>oargridsub -t allow classic ssh CLUSTER1:rdef="/nodes=1",\</pre>							with console (useful if network doesn't work)	
arsub -I oarsub -I -l slash_22=1 env grep OAR g5k-subnets	CLUSTER2	:rdef="/	nodes=4" -s '2011-0 /prog42/helloworld	5-16 14:20	9:00'\	kaconsole -m node.site.grid5000.fr			
cat \$OAR_NODE_FILE	View result		/prog4z/nettowortu					Deploy and save your environment	
<pre>0 nodes on griffon during 2h with 20G ib cards arsub -I -l nodes=20,walltime=2 \</pre>	tail -f OA	<pre>tail -f OAR.CLUSTER_JOB_ID.std{err,out}</pre>						Generate a desciption file kaenv3 -p squeeze-x64-base -u deploy > image.env	
-p "cluster='griffon'" -p "ib20G='YES'"	Hardw	Hardware Overview [[Special:G5KHardware					ardware]]	(edit file image.env to update with your values)	
Submission : Passive	Bordeaux	#nodes	cpu Intel Amd	memory	disk	GPU	network	Deploy kadeploy3 -f \$OAR NODE FILE -a image.env	
arsub ~/my-script i nodes during 2h with 10G ib cards	Bordeplage Bordereau	51 93	2x1cores @3.0Ghz 2x2cores @2.6Ghz			1	ib10g ddr	Save your image kaenv3 -a image.env	
parsub -l nodes=5,walltime=2 -p "ib10G='YES'"~/prog	Borderline	10	4x2cores @2.6Ghz		520GB	1	{mx,ib}10g	· · · · · · · · · · · · · · · · · · ·	
> cat OAR.OAR_JOB_ID.std{err,out}	Grenoble Adonis	12	2x4cores @2.26Ghz	2468	217GB	C1070	ib40a adr	Multi-sites deployment kadeploy3 -e squeeze-x64-base -f ~/grid nodes\	
Connection to a running job	Edel	72	2x4cores @2.27Ghz	24GE	52GB	-	ib40g qdr	multi-server -k	
arsub -C OAR JOB_ID on a node in your reservation	Genepi* Lille	34	2x4cores @2.5Ghz	8GB	139GB	· ·	ib20g ddr	Easy use with public share kadeploy3 -f \$0AR NODE FILE	
arsh node.fqdn	Chicon	26	2x2cores @2.6Ghz			· ·	mx10g	-f http://public.nancy.grid5000.fr/~login/image.env -k	
ubmission : Reservation (passive mode)	Chimint Chinachint	20 46	2x4cores @2.4Ghz 2x4cores @2.83Ghz		260GB 217GB	1	- mx10g		
arsub -r '2011-05-16 14:20:00' \	Chirloutte	8	2x4cores @2.4Ghz		260GB	M2050	-	Links https://www.grid5000.fr/	
-l nodes=10,walltime=0:10:00 ~/my-script eservation with deploy type (interactive mode)	Lyon Capricorne*	56	2x1core @2.0Ghz	2GB	69GB	· .	mx10g	DrawGantt (Nodes states in a temporal diagram)	
arsub -t deploy -r '2011-05-16 14:30:00' \	Sagittaire*	79	2x1core @2.4Ghz	2GB		1	-	https://helpdesk.grid5000.fr/oar/Site/drawgantt.cgi Monika (Nodes states with properties)	
-l nodes=5,walltime=2 -p "ib10G='YES'" -n "Prog42"	Nancy Griffon	92	2x4cores @2.5Ghz	1608	278GB		ib20q ddr	https://helpdesk.grid5000.fr/oar/Site/monika.cgi	
Delete a reservation Dardel OAR JOB ID	Graphene	144	1x4cores @2.6Ghz		278GB		ib20g ddr	Ganglia (Nodes metrics) https://helpdesk.grid5000.fr/ganglia/	
	Orsay Gdx	310	2x1core @2.0, 2.4Ghz	2GB	69GB		mx10g	Grid'5000 API UMS (Account, quotas extensions	
PI [[API_Main_Pratical]] [[API]]	Netgdx	30	2x1core @2.0, 2.4Ghz 2x1core @2.0Ghz					https://api.grid5000.fr/ https://api.grid5000.fr/ui/account Grid'5000 Software	
PI Sid	Stremi	44	2x12cores @1.7Gh	4868	232GB			[Grid5000:Software] on wiki.	
https://api.grid5000.fr/sid/ui/index.html rid'5000 Nodes API	Rennes		-					DrawGanttGlobal https://www.grid5000.fr/gridstatus/oargridgantt.cgi	
https://api.grid5000.fr/2.0/ui/nodes.html	Paradent Paramount	64 33	2x4cores @2.5Ghz 2x2cores @2.33Ghz	32GB 8GB	139GB 520GB	1	- mx10g	MonikaGlobal	
vnc data [[Syncing data]]	🭎 Parapide	25	2x4cores @2.93Ghz	24GB	434GB		ib20g ddr	https://www.grid5000.fr/gridstatus/oargridmonika.cgi Public share access from outside g5k (with http auth)	
	Parapluie Sophia	40	2x12cores @1.7Ghz	48GB	232GB	•	ib20g ddr	https://api.grid5000.fr/sid/grid5000/sites/site/public/login/	
<pre>/ncdry-rundelete -avz ~/synced site.grid5000.fr</pre>	Helios	56	2x2cores @2.2Ghz				mx10g	Public share access from inside g5k https://public.site.grid5000.fr/~login/	
site in bordeaux lyon toulouse; do	Sol Suno	50 45	2x2cores @2.6Ghz 2x4cores @2.26Ghz		217GB 519GB	1	1	Public share (populate your own public share)	
<pre>rsyncdelete -avz ~/synced \${site}.grid5000.fr:~; ne</pre>	Toulouse		-					drop files in your ~/public/ folder (see README in there)	
en for comments :: support-staff@lists.grid5000.f	Pastel Violette*	80 52	2x2cores @2.61Gh 2x1core @2.19Gh		217GB 63GB			With electrical consumption. #3679 version (See https://helpdesk.grid5000.fr/supervision/lyon/wattmetre/	

GRID'5000 and Virtualization

Supporting virtualization experiments

- System images
 - Pre-built images maintained by the technical staff
 - Xen 3.x, KVM
- Network
 - Need reservation scheme for both IP and MAC addresses
 - · Mac addresses are now randomly assigned
 - Sub-net range ccan be booked for lps (/18, /19, ...)
 - AAAAAAA FINIR

Industrial Relations

Alcatel-Lucent Bell Labs

Traffic aware routers

Orange Labs

Data placement algorithms on P2P architectures

Microsoft Resarch-INRIA

 Microsoft Azure: A-Brain (AzureBrain), « cloud » testbed for experimenting storage technologies (Kerdata)

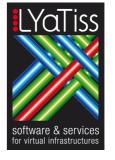
EDF R&D (Myriads, GRAAL)

BULL (GRAAL, Runtime)

Application mapping

IBM

• BlueWaters, Clouds



Startup companies

Three startups companies started by Grid'5000 researchers

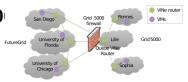
- LYaTiss (LIP, ENS Lyon) around virtualization et network QoS
- **SysFera** (LIP, ENS Lyon) around large scale computing over Grids and Clouds
- Activeon (INRIA Sophia) around distributed computing

GRID'5000 EXPERIMENTS

nría

F. Desprez - Closer 2012

Recent results in several fields


- Cloud: Sky computing on FutureGrid and Grid'50
 - Nimbus cloud deployed on 450+ nodes
 - Grid'5000 and FutureGrid connected using ViNe
- HPC: factorization of RSA-768

F. Desprez - Closer 2012

- Feasibility study: prove that it can be done
- Different hardware → understand the performance characteristics of the algorithms
- Grid: evaluation of the gLite grid middleware
 - Fully automated deployment and configuration on 1000 nodes (9 sites, 17 clusters)

13/04/12 - 43

List of Open Challenges

Network

- Traffic Awareness

System

- Energy Profiling of Large Scale Applications
- Robustness of Large Systems in Presence of High Churn
- Orchestrating Experiments on the gLite Production Grid Middleware

Programming Paradigm

- Large Scale Computing for Combinatorial Optimization Problems
- Scalable Distributed Processing Using the MapReduce Paradigm

Domain Specific

- Multi-parametric Intensive Stochastic Simulations for Hydrogeology
- Thinking GRID for Electromagnetic Simulation of Oversized Structures

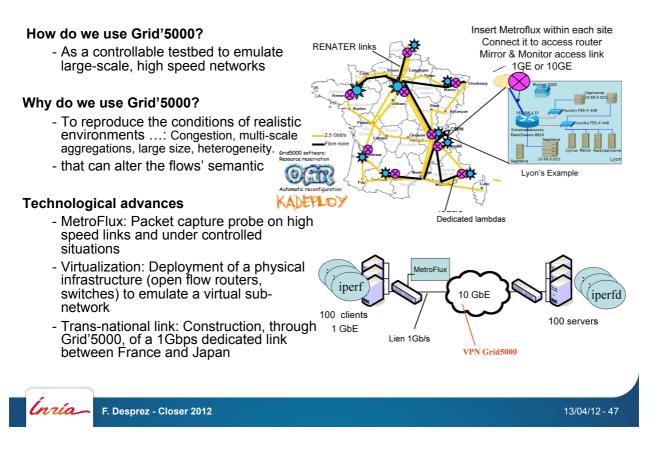
F. Desprez - Closer 2012

Traffic Awareness

Context

- Common Labs INRIA & Alcatel Bell Labs
- Design of traffic aware routers for high-speed networks

Objective


- Identify application classes from the behavioral (semantic) analysis of corresponding traffic
 - How does traffic behavior relate to flows semantic?
 - Which traffic characteristics are capturable on high speed networks?
 - Which constraints to get meaningful characteristics on-line?

Difficulties / Pitfalls

- · Initial program hampered by
 - Difficulty to obtain (download or simulate) traffic traces characteristic of different applications
 - Semi-supervised learning (as primarily thought) does not seem to overperform traditional decision tree algorithms

Traffic Awareness & Grid5000

Energy Profiling of Large Scale Applications (Energy)

Issues

- Reduce energy consumption of large-scale infrastructure
- Management of physical resources & virtualized resources

Objective

- Handle energy efficiency aspects of large scale applications deployed on multiple sites

Roadmap

- Model (complex) energy consumptions of systems and applications Need to profile applications
- Develop software to log, store and expose energy usage Make use of the G5K energy sensing infrastructure
- Experiments on large scale and heterogeneous infrastructure

How to Decrease Energy Consumption without Impacting Performance?

How to monitor and to analyze the usage and energy consumption of large scale platforms?

How to apply energy leverages (large scale coordinated shutdown/ slowdown)?

How to design energy aware software frameworks?

How to help users to express theirs Green concerns and to express tradeoffs between performance and energy efficiency?

Energy: Challenges

Exploring energy aspects at large scale

Two focus

- Applications deployed on real physical resources
- Applications and services deployed on virtualized resources

Providing feedback on large scale applications Extending the Green Grid5000 infrastructure Analyzing energy usage of large scale applications per components Designing energy proportional frameworks (computing, memory or network usage)

Robustness of Large Systems in Presence of High Churn (P2P-Ch)

Issues

- Large scale distributed, heterogeneous platforms 10K-100K nodes
- Frequency of connections/disconnections (churn)

Objective

- Maintain the platform connectivity in presence of high churn

Roadmap

- Develop a formal model to characterize the dynamics Failure Trace Archive – http://fta.inria.fr
- Design algorithms for basic blocks of distributed systems on a churn-resilient overlay
- Experiments these algorithms on G5K

F. Desprez - Closer 2012

13/04/12 - 51

Robustness of Large Systems in Presence of High Churn (P2P-Ch)

Distributed algorithms for dynamic systems

- Variable number of peer, dynamic topology, mobility

Two approaches

- Determinist

Consensus, mutual exclusion (1 internship Regal)

- Probabilistic

High volatility, partitioning management

Integrate models / traces in fault injection tools

- FCI-FAIL - (Orsay)

Large scale experiments on Grid'5000

Orchestrating Experiments on the gLite Production Grid Middleware (Orchestration)

Issues

- Production Grid Middleware

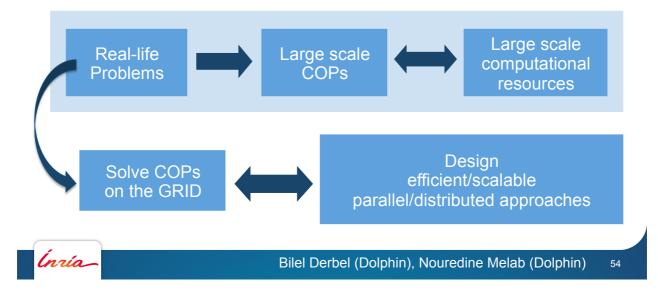
Objective

- Explore the use of the Grid'5000 testbed as a test environment for production grid software such as gLite and other related services

Roadmap

- Define a detailed procedure to deploy the gLite middleware on Grid'5000
- Define reusable services: Control of a large number of nodes, data management, experimental condition emulations, load and fault injection, instrumentation and monitoring, etc.
- Develop experiment orchestration middleware
- Perform large-scale experiments involving the gLite middleware and applications from production grids

13/04/12 - 53



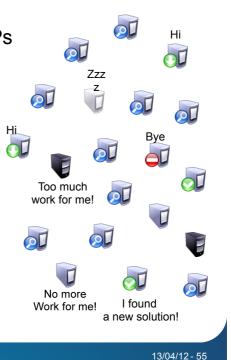
F. Desprez - Closer 2012

Large Scale Computing for Combinatorial Optimization Problems (COPs)

Objectives

 Solve optimally large scale Combinatorial Optimization Problems (COPs) using huge amount of computational resources

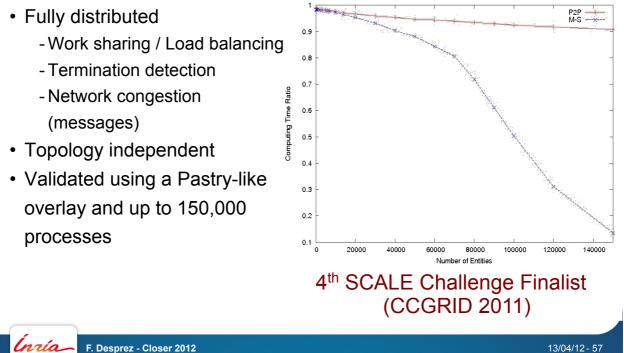
Large Scale Computing for Combinatorial Optimization Problems (COPs)


Goals at the application level

- Solve optimally previously unsolved COPs
- New specific COPs approaches

Goals at the algorithmic level

- How to gain in scalability?
 - Pure peer-to-peer approaches
 - Fully distributed algorithms
- How to address latencies/resources volatility?
 - Fault-tolerant/dynamic algorithms
 - Redundancy vs efficiency


Large Scale Computing for Combinatorial Optimization Problems (COPs)

How GRID5000 can help?

- At the application level (make it a success story)
 - Effectively find unknown and optimal COPs solutions
- At the algorithmic level (make it smart)
 - Experiments/simulations are mandatory to validate our algorithms
 - Measure the scalability / efficiency / congestion / fault-tolerance robustness of our approach

COPS: First Results

P2P Branch&Bound

COPs: Next Challenging Issues

Extensions to a dynamic, volatile and fully distributed environment

- Maintain overlay connectivity distributely
- Efficient fault-tolerant distributed algorithms

Study the impact of network heterogeneity

Study the proposed distributed protocol under some formal model capturing the dynamicity of the network

- Related to high churn challenge

Study the scalability of the proposed dynamic approach

- Large scale experimentations, simulations, emulation

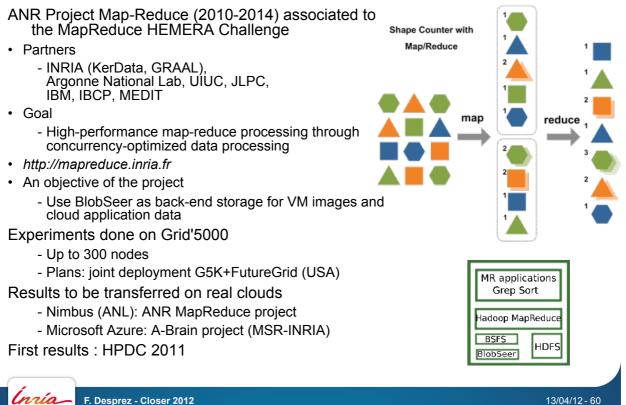
Scalable Distributed Processing Using the MapReduce Paradigm

Issues

- Distributed data-intensive applications (Peta-bytes)
- Data storage layer
 - Efficient, fine-grain, high throughput accesses to huge files
 - Heavy concurrent access to the same file (R/W)
 - Data location awareness
 - Volatility

Objective

• Ultra-scalable MapReduce-based data processing on various physical platform (clouds, grids & desktop computing)


Roadmap

- Advanced data & meta-data management techniques
- · MapReduce on desktop grid platforms
- · Scheduling issues
 - Data & computation, heterogeneity, replication, etc.

Ínría

F. Desprez - Closer 2012

Scalable Distributed Processing Using the MapReduce Paradigm

Multi-Parametric Intensive Stochastic Simulations for Hydrogeology (Hydro)

Issues

- Groundwater resource management & remediation
- Limited knowledge
 Highly heterogeneous and fractured geological formations
- Numerical models

Probabilistic data + uncertainty quantification methods Stochastic framework (multiple simulations) Various physical parameters

- Large size geological domain to discretize

Objective

- Efficient execution of multi-parametric heavy computation simulations

Roadmap

- Study how to program, deploy & schedule the application
- Validate the approach for increasing level of parallelism for 2D problems then 3D problems

F. Desprez - Closer 2012

Alimentation par les precipitations Zone de saturation Autore de saturation Cause de saturation Aquifère Aquifère

13/04/12-61

BONFIRE

BonFIRE data sheet the (451) group epcc **Type of project**: Integrated Project POZNAN Project coordinator: ATOS **NE**XTWORKS III ibbt Project start date: 1st June 2010 Duration: 42 months **NRIA At(OS** Fraunhofer **EC contribution**: $7.2M \in (\text{orig } 6.7 \text{ M} \in)$ RedZind (1.34 M€ for 2 open calls) MANCHESTER **cloudium**systems The **BonFIRE** (Building service testbeds for Future Internet Research and Experimentation) project is designing, building and operating a multi-site cloud facility to support research across applications, services and systems targeting services research community on Future Internet.

Facility for services experimentation

6 sites

Inría

- 4 sites running a customized OpenNebula stack
- 1 site running a customized Emulab instance (Virtual Wall, IBBT)
- 1 site running HP Cells

Real and emulated networks

- Emulab-based Virtual Wall
- Controlled networks on the way (GEANT AutoBAHN and FEDERICA)

Experiment Descriptors

- Portal use point and click to run an experiment
- "Restfully" describe the experiment programmatically
- JSON DSL (OVF on the way) describe the experiment statically

Advanced monitoring

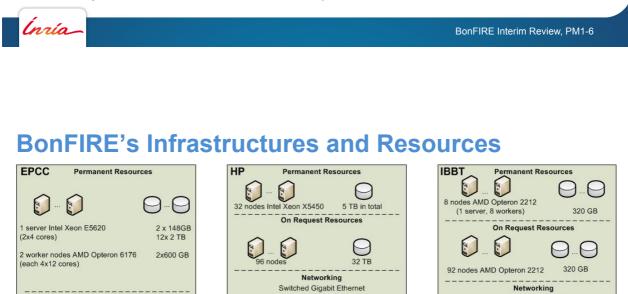
- Zabbix on all VMs
- Infrastructure monitoring (understand what is happening on the machines hosting your VMs)

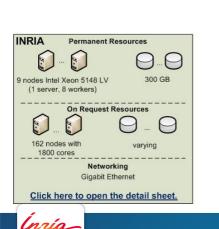
Experiment at scale using on-request resources

Sites operate a permanent testbed

The fr-inria site can be extended on request over the Grid'5000 resources located in Rennes

- BonFIRE user reserves the resources (and gets exclusive access to the hardware)

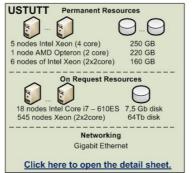

Just another user for the Grid'5000 stack

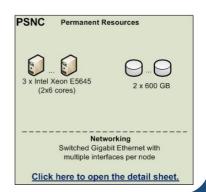

- At the start of the reservation, Grid'5000 machines
 - get deployed as OpenNebula worker nodes

Get moved to the BonFIRE Vlan

Get added as a new cluster to the running OpenNebula frontend

BonFIRE users get exclusive access to a 162 nodes/ 1800 core OpenNebula infrastructure (screencast at http://vimeo.com/39257324)

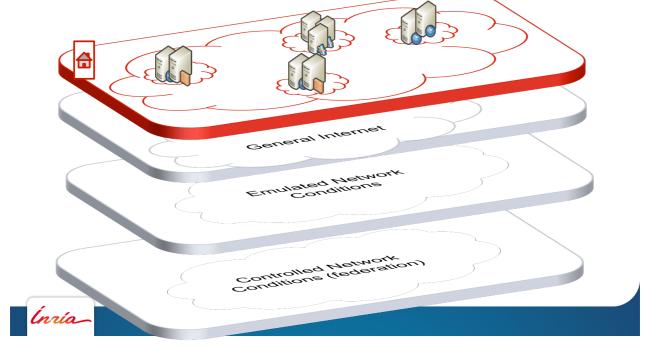


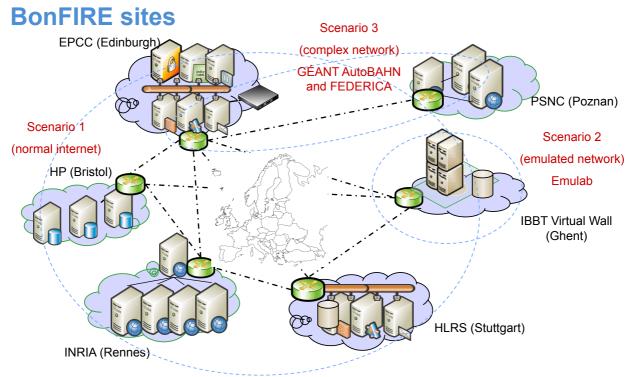

Networking

Gigabit Ethernet

Click here to open the detail sheet.

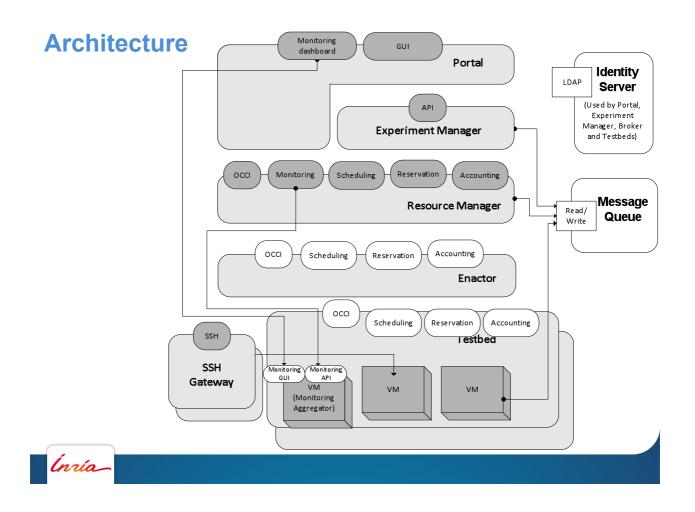
Click here to open the detail sheet.


Switched Gigabit Ethernet with


multiple interfaces per node

Click here to open the detail sheet.

Three Scenarios – Service Experiments on top of three different Network Infrastructures


- 1. Extended multi-site clouds connected through standard internet
- 2. Cloud scenario with emulated network (IBBT's Virtual Wall based on Emulab)
- 3. Extended Cloud scenario with controlled network (implies federation)

Permanent (~350cores / 30TB) & On-Request (theoretically 3000+ cores) infrastructures Note: network links indicative only

BonFIRE Offering (1/2)

- Support experiments over multiple heterogeneous cloud testbeds using a single declarative experiment descriptor.
- Support geographically distributed experiments.
- Support experiment monitoring at both resource level (e.g. CPU usage, temperature, packet delay etc.) and application level.
- Support the deployment of different software stacks over a variety of differently configured resources (compute, storage, network etc.) in multiple heterogeneous cloud testbeds.
- Support elasticity within an experiment, i.e. dynamically create, update and destroy resources from a running node of the experiment, including. cross-testbed elasticity.

BonFIRE Offering (2/2)

- Support experiment management including experiment sharing, repeating and result collation and storage.
- Support the definition of an entire infrastructure in a single uniform experiment description.
- Study the possible federation of the BonFIRE testbeds with a variety of external cloud facilities, such as those provided by Federica or OpenCirrus.
- Support advanced network emulation via the Virtual Wall, including
 - Dynamic modifications of running experiments (at the moment the network topology and node images have to be fully configured at the start of the experiment.)
 - Additional generic network (e.g. overlay routing) and application layer functionality

RELATED PLATFORMS

Related Platforms

Ínría F. Desprez - Closer 2012

13/04/12-73

CONCLUSION

Conclusion and Open Challenges

- · Computer-Science is also an experimental science
- There are different and complementary approaches for doing experiments in computer-science
- · Computer-science is not at the same level than other sciences
- But, things are improving...
- GRiD'5000: a test-bed for experimentation on distributed systems with a unique combination of features
 - *Hardware-as-a-Service* cloud: redeployment of operating system on the bare hardware by users

13/04/12 - 75

- Access to various technologies (CPUs, high performance networks, etc.)
- Networking: dedicated backbone, monitoring, isolation
- Programmable through an API

Inría

F. Desprez - Closer 2012

What Have We Learned?

Building such a platform was a real challenge !

- · No on-the-shelf software available
- · Need to have a team of highly motivated and highly trained engineers and researchers
- Strong help and deep understanding of involved institutions!

From our experience, experimental platforms should feature

- · Experiment isolation
- Capability to reproduce experimental conditions
- · Flexibility through high degree of reconfiguration
- · The strong control of experiment preparation and running
- Precise measurement methodology
- · Tools to help users prepare and run their experiments
- Deep on-line monitoring (essential to help observations understanding)
- · Capability to inject real life (real time) experimental conditions
- (real Internet traffic)

Conclusion and Open Challenges, cont

- Testbeds optimize for experimental capabilities, not performance
- Access to the modern architectures / technologies
 - •Not necessarily the fastest CPUs
 - But still expensive → funding!
- Ability to trust results
 - Regular checks of testbed for bugs
- · Ability to understand results
 - Documentation of the infrastructure
 - Instrumentation & monitoring tools
 - network, energy consumption
 - Evolution of the testbed
 - maintenance logs, configuration history
- Empower users to perform complex experiments
 - Facilitate access to advanced software tools

F. Desprez - Closer 2012

13/04/12 - 77

QUESTIONS?

Special thanks to E. Jeannot, A. Lèbre, D. Margery, L. Nussbaum, C. Perez, O. Richard

www.grid5000.fr

Frédéric DESPREZ Frederic.Desprez@inria.fr

Software Validated on Grid'5000 (1/2)

• **CONFIIT**, Computation Over Network with Finite number of Independent and Irregular Tasks (Reims)

• ParadisEO-G, Parallel and Distributed Evolving Objects on top of Globus (Lille)

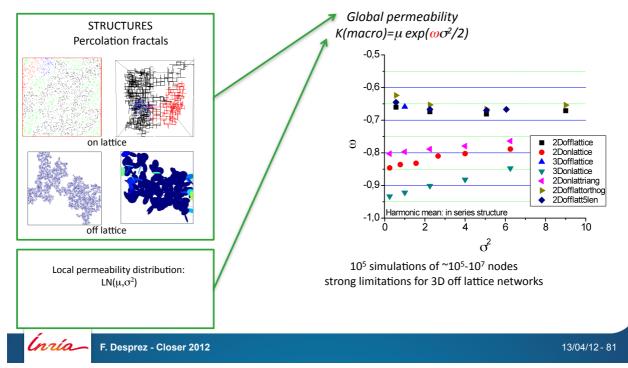
• **DeployWhere/FDF**, framework open source orienté composant pour le déploiement de logiciels distribués et hétérogènes (Lille)

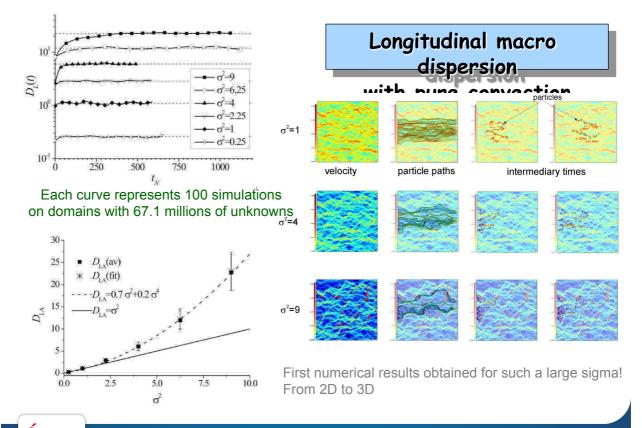
- Wrekavoc (Nancy)
- GridTPT, plateforme de test distribuée pour prouveurs de formules (Nancy)
- veriT, solveur de formules SMT (Nancy)
- GSOC, Grid Security Operation Center (Besançon)
- **dPerf**, prédiction de performances des applications distribué en pair-à-pair (Besançon)
- XtreemOS (Rennes)
- BlobSeer (Rennes)
- Bibliothèque de mesures de la consommation électrique. Placement de tâches Energy-aware (Toulouse)

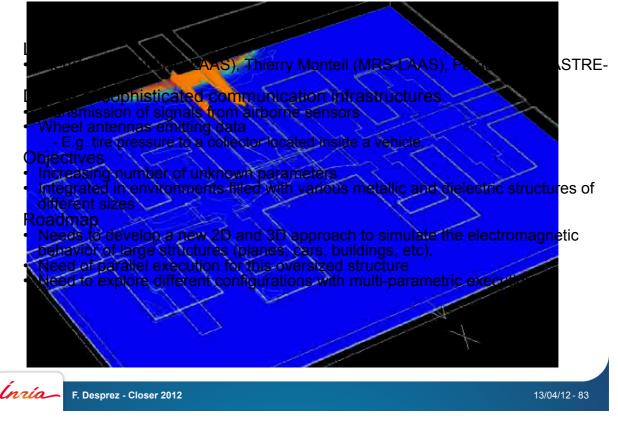
Ínría

F. Desprez - Closer 2012

Software Validated on Grid'5000 (2/2)


VMdeploy / Saline (Nantes) KEntropy (Nantes) Kargo (Nantes) KaStore (Nantes) kDFS (Nantes) Metroflux (Lyon) ANPI (Lyon) OVNI5000 (Lyon) SHOWATTS (Lyon) MPI5000 (Lyon) Green Grid5000 (Lyon) ULCMi (Lyon) HLCMi (Lyon)

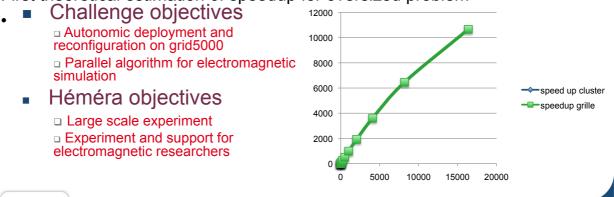

DHICO (Lyon) DIET (Lyon) Grudu (Lyon) P2P-MPI (Strasbourg) MOTEUR workflow manager (Nice)


Influence of Fracture Network Complexity on Upscaling Hydrodynamic Laws

Objective: establish references results for more realistic fracture networks

Thinking GRID for Electromagnetic Simulation of Oversized Structures (Electro)

Thinking GRID for Electromagnetic Simulation of Oversized Structures (Electro)


Utilization of multithreading and MPI over grid

Collaboration between application, middleware and platform

Uses of autonomic policies:

- · Breakdown or performance loss of a set of machines
- · Automatic execution of new simulations in self adapting network set-ups
- · Autonomic exploration of new solutions in multi-parametric mode

First theoretical estimation of speedup for oversized problem

List of Working Groups

Transparent, Safe and Efficient Large Scale Computing

• Stéphane Genaud (ICPS), Fabrice Huet (OASIS)

Energy Efficient Large Scale Experimental Distributed Systems

· Laurent Lefèvre (RESO), Jean-Marc Menaud (ASCOLA)

Bring Grids Power to Internet-Users thanks to Virtualization Technologies

• Adrien Lèbre (ASCOLA), Yvon Jégou (MYRIADS)

Efficient exploitation of highly heterogeneous and hierarchical large-scale systems

- Olivier Beaumont (CEPAGE), Frédéric Vivien (GRAAL)
- Efficient management of very large volumes of information for data-intensive applications
- Gabriel Antoniu (KERDATA), Jean-Marc Pierson (ASTRE) Completing challenging experiments on Grid'5000
- Lucas Nussbaum (ALGORILLE), Olivier Richard (MESCAL)

Modeling Large Scale Systems and Validating their Simulators

Martin Quinson (ALGORILLE), Arnaud Legrand (MESCAL)

Nistriauli usatusiani and tus**ff**ia abausatauinatian

Transparent, Safe and Efficient Large Scale Computing

Leaders

- Stéphane Genaud (ICPS), Fabrice Huet (OASIS)
- Scientific challenges
- Demonstrate which software architectural designs and programming models best match modern large-scale distributed systems

Grid'5000 allows to experimentally reproduce characteristics of such systems

- Network heterogeneity
 - High-latency WAN network links mixed with low-latency LAN
- Hierarchical architecture
- · Virtualization of resources

Grid'5000 allows to test

- Programming Models
 - Combination of models ? New paradigms?

Middleware

- Which abstractions for runtime libraries or users?

85

Energy Efficient Large Scale Experimental Distributed Systems

Leaders

Laurent Lefèvre (RESO), Jean-Marc Menaud (ASCOLA)

Objective

 Energy aware software approaches able to reduce the energy consumption needed for high performance computing and networking operations in large scale distributed systems (datacenters, Grids and Clouds)

Working on three levels

- Hardware
- Infrastructure
- Application

Roadmap

- JTE «Aspects énergétiques du calcul» : 13/01/2011
 - Supported by Héméra

• JTE «Energie dans les centres de données» : Juin/2011

87

Bring Grids Power to Internet-Users thanks to Virtualization Technologies

Leaders

Adrien Lèbre (ASCOLA), Yvon Jégou (MYRIADS)

Context

- Job schedulers
- Exploit all VM capabilities

Objectives

- Cluster/Grid-Wide Context Switch
 - Manipulate vJobs (a job in VMs) instead of jobs
- From the Grid to the Desktop

Animation

• Wiki page (2009), mailing list, JTE, ...

Efficient exploitation of highly heterogeneous and hierarchical large-scale systems

Leaders

- Olivier Beaumont (CEPAGE), Frédéric Vivien (GRAAL)
- Potential research themes
- · Mapping of data and computations
- (potentially with replication)
- Resource management
- Load-balancing
- Scheduling in probabilistic contexts
- (uncertainties, failures, etc.)
- Distributed scheduling
- · Communication- and memory-aware scheduling
- Platform modeling (mainly, use of)

Efficient management of very large volumes of information for data-intensive applications

Leaders

• Gabriel Antoniu (KERDATA), Jean-Marc Pierson (ASTRE)

Objectives

- Explore research issues related to high-level services for information management
 - Search, mining, visualization, processing)
- · For large volumes of distributed data
- · Taking into account
 - Security, efficiency and heterogeneity
 - Applications requirements
 - Execution infrastructure (grids, clouds)

Issues

• Fault-tolerance, caching, transport, security (encryption, confidentiality), consistency, location transparency

Interoperability among storage systems; Data indexing

Data mining, data classification, data assimilation, knowledge extraction,

an

Completing Challenging Experiments on Grid'5000

Leaders

• Lucas Nussbaum (ALGORILLE), Olivier Richard (MESCAL)

Spin off the 'Orchestration' scientific challenge

Axis of work

- · Methodology of the experimentation
 - Scenarios, experimental conditions, metrics, "cahier de laboratoire"
- Tools for the experimentation
 - Increasing the confidence in experimental results

DSL?

In conjunction with SimGrid

Modeling Large Scale Systems and Validating their Simulators

Leaders

 Martin Quinson (ALGORILLE), Arnaud Legrand (MESCAL) Context

- Many studies rely on simulations
 - Easy to set upReproducibleControlledEnable exploration- FastCheapNot disruptive
- Unfortunately models in most simulators are either simplistic, not assessed, or even plainly wrong.

Challenges

Models need to be realistic, instantiable, and computationally tractable.
 Outcome

- · Better simulators with standard benchmark platforms
- · Better understanding of resources, applications, and platform
- · Interactions with other working groups regarding methodology (design of

experiments, visualization, workload modeling, ...)