

Smart Connected Digital Factories: Unleashing the Power of Industry 4.0 and the Industrial Internet

Michael P. Papazoglou

Executive Director - ERISS Tilburg University, The Netherlands email: mikep@uvt.nl, http://www.eriss.org

- An Introduction to Industry 4.0
- Smart Connected Factories
- Big Data & Analytics in Smart Connected Factories
- Closing Remarks

An Introduction to Industry 4.0

Y 10 16

NORTHROP GRUMMAN

The 4th Industrial Revolution

Siemens AG 2015

What is Industry 4.0?

- Industry 4.0 is a new level of organisation and control over the entire value chain of the life cycle of products. It is geared towards increasingly individualised customer requirements.
- This cycle begins at the product idea, covers the order placement and extends through to development and manufacturing, all the way to the product delivery for the end customer.
- It is based on the digitisation of the entire production environment:
 - availability of all relevant information in real time by connecting all instances involved in the value chain.
 - ability to derive the optimal value-added flow at any time from the data.
 - connection of people, things, services and systems to create dynamic, optimised value-added connections within and across companies.
 - These can be optimised according to different criteria, e.g., costs, availability & consumption of resources.

The Road to the 4th Industrial Revolution

Digitized manufacturing takes adaptability to the next level

Conventional manufacturing

- Mass production
- Large quantities
- Small margins
- Sequential value chain
- Long turnaround time
- Low flexibility

Digitized manufacturing

- Custom production
- Small quantities, short run
- High margins
- Changing collaborative partnerships
- Short turnaround time
- Highly flexible and adaptive

Source: GPS Consulting

The 4th Industrial Revolution: The Big Picture

Industry 4.0 Smart Factory

The Future of Manufacturing with Industry 4.0

Michael P. Papazoglou © 8th Int'l ACM Conference on Cloud Computing & Services Science (CLOSER `18) 21 March 2018, Funchal Madeira, Portugal 10

Properties of Industry 4.0

- 1. Digitisation of all physical assets and processes
- 2. Integration of vertical and horizontal value chains
- 3. Control and visibility:
 - As products move from ideation and development to end of life, the wealth of data produced at every stage of the manufacturing lifecycle can create a product's "digital thread," which denotes the aggregated, product-specific data stream that combines information from a variety of systems and sources.

4. Actionable insights:

 The convergence of the IoT, processes and analytics is generating a new world of big data, which is enabling new capabilities such as tailored customer offerings, predictive solutions, streamlining production processes and adapt to changes.

5. Human-centred automation:

 Improve user experience so that information is presented in the context of manufacturing tasks performed, leading to better decision-making and new possibilities for improvement.

Industry 4.0 Enabling Technologies

Industry 4.0 is Big Science!!

The Cloud Connection to the Industrial Internet

- Cloud-centred manufacturing, extends the concept of virtualisation to a shared diversified collection of manufacturing resources e.g., machine tools & factories, offers those resources – in the form of SaaS model - and deploys them at scale to form production lines in response to customer demand.
 - manufacturing service providers can engage in new, flexible arrangements leading to better utilisation of manufacturing capabilities & provide heightened levels of quality and value
- "Edge analytics" greatly reduces the amount of raw data that must be stored on servers, either on premises or in the cloud, and reduces the amount of network traffic being generated.
 - Collecting and analysing data close to the endpoints means that action can take place locally in real or near-real time.

Smart Connected Factories

ALL STALLSON

1 10 15

NORTHROP GRUMMAN

En route to Smart Manufacturing Networks

Source: Capgemini Consulting 2015

The Digital Twin: Connecting The Physical & Digital Worlds

Digital Twin:

A digital representation of a physical product or process to enable testing before physical implementation.

Enables manufacturers to overlay the virtual, digital product on top of any physical product at any stage of production on the factory floor and analyse its behaviour.

 Manufacturers can have a complete digital footprint of the entire manufacturing process spanning product, production, and performance.

Product designers and engineers can make informed choices about materials and processes using visualisation tools, e.g., 3D CAD/CAM tools, during the design stages of a digital product and immediately see the impact on a physical version of the product.

Source: Deloitte series on Industry 4.0, 2017.

Manufacturing Operations Management

MANUFACTURING OPERATIONS MANAGEMENT Business and Manufacturing Process View

riss

Factory Model: Connecting the Enterprise to the Shop-Floor

From Smart Factory to Agile Value Chains

From Smart Data to Smart Manufacturing Networks

Vertical Integration within a Factory

Vertical integration of production activities within smart factories from product design and development and the various shop floor applications, devices, IoT, robot and equipment is necessary to enable production.

Horizontal Integration between Factories

Horizontal integration is combined with vertical integration to offer the prospect of coordination of orders, materials flow and production data, with all geographically dispersed entities, e.g., customers, distributors and channel partners, materials and sub-product suppliers, contract manufacturers, and technology solution providers, to achieve end-to-end, holistic integration through the entire value chain.

Big Data & Analytics in Smart Connected Factories

Northrop Grumman

Understanding the Hourglass --

<---- Suppliers, Partners, Machines, Components, Materials, Devices, Humans, ...

<--- Production processes

<--- Production, Distribution, Sales, x*, data

Production Plant Data

Data sources include:

riss

- External data sources: e.g., user groups, social media, focus groups, or surveys to build customer data.
- Internal data sources: for data capture and analysis (e.g., an integrated ERP system provides data on products, processes, & people at all levels & departments in organization).
- M2M interaction: Smart sensors can collect data directly from machines and equipment. Builtin, low-cost sensors can detect a wide range of attributes, including location, weight, temperature, vibration, flow rate, humidity, and balance.

The above figures reflect the data generated from just one of many production lines that produce a particular consumer packaged products.

Source: GE Intelligent Platforms.

Industry 4.0 Data Loop

Source: General Electric

Smarter Analytics: Improved Resource & Process Performance

Smarter Analytics Lead to Systems of Insight

Concluding Remarks: What is so Different about Smart Manufacturing?

R&D Challenges – Open Research Problems

STRATEGIC R&D OPPORTUNITIES FOR IOE

Science & Engineering Foundations	Robust Effective Construction of Systems & Infrastructure		
	Devise cost effective system, design, analysis & development		
	Create domain-specific architectures & frameworks		
	• Enable more na		ractions
	Offer assumption	WARNING	'ed decision-making.
	 Synthesize & evc (diagnostics, prc 		n predictable behaviour
	Anticipate emer		ctions.
Systems Engineering	Improved Performe		utational & Physical Systems
	Create methods		ation, & validation of IoE
	 Develop loE-bas flexibility, reusab 		afety, resilience, adaptability,
	Consider roles c	CHALLENGES	of human knowledge & behaviour
	Incorporate unc		asoning & decision-making
Applied Development and Deployment	Effective and Relia	AHEAD	ability Mechanisms
	Create universal,	· -	ge heterogeneous systems
	Build an inter-connected and interoperable shared development infrastructure		
	 Provide advanced abstraction mechanisms to manage complexity of IoE programming, evolution, monitoring & mgt that span the digital & physical divide 		
	Develop flexible IoE design methods based on Agile & DevOps		
Michael P. Papazoglou © 8th Int'l ACM Conference on Cloud Computing & Services Science (CLOSER '18) 21 March 2018, Funchal Madeira, Portugal 32			

Shift from Traditional to Smart Factories

→ New business models through the convergence of IT & production

