
Blockchain Application Design and 
Development, and 
the Case of Programmable Money

CLOSER’21 Keynote

Prof. Dr. Ingo Weber | April 2021

ingo.weber@tu-berlin.de | linkedin.com/in/ingomweber/ | Twitter:  @ingomweber

mailto:ingo.weber@tu-berlin.de
https://www.linkedin.com/in/ingomweber/
https://twitter.com/ingomweber


Agenda

• Blockchain basics and terminology

• Designing and developing blockchain applications
• Architecture & design

• Model-driven engineering

• Blockchain and Services:
• Integrating Blockchain-based Applications with Services

• Blockchain-as-a-Service

• Service-orientation vs. Smart Contracts

• Programmable money

• Blockchain adoption

2



Preliminaries and Definitions



Blockchain – replacing centralized trusted 
authority 

Organization 1 Organization 2 Organization 1 Organization 2

Centralized Trusted Authority

Traditional trusted environment Blockchain trustless environment

Blockchain network

4



Blockchain 2nd gen – Smart Contracts

• 1st gen blockchains: transactions are financial transfers
• Now Blockchain ledger can do that, and                          

store/transact any kind of data
• Blockchain can deploy and execute programs: Smart Contracts

• User-defined code, deployed on and executed by whole 
network

• Can enact decisions on complex business conditions
• Can hold and transfer assets, managed by the contract itself
• Ethereum: pay per assembler-level instruction

6



So what?

• Well, blockchains are exciting because they can be used as a 
new foundation for re-imagining systems:

• Neutral infrastructure for processing transactions and executing 
programs

• Potentially interesting for innovation at all touch-points between 
organizations or individuals 

➢Blockchain applications have the potential to disrupt the fabric of 
society, industry, and government

• Blockchains can also be used as a technology platform to 
handle hard issues of data replication and system state 
synchronization with high integrity.

7



What is a blockchain?

Parable of the blind men and the elephant, see e.g., https://wildequus.org/2014/05/07/sufi-story-blind-men-elephant/ (source of figure)

8

https://wildequus.org/2014/05/07/sufi-story-blind-men-elephant/


What is a blockchain?

No, it’s a code 
execution 
platform!

It‘s a 
database!

Actually, it‘s 

a network!
Clearly, it’s 

a BPMS!

Parable of the blind men and the elephant, see e.g., https://wildequus.org/2014/05/07/sufi-story-blind-men-elephant/ (source of figure)

9

https://wildequus.org/2014/05/07/sufi-story-blind-men-elephant/


Defining Blockchain (1)

• Distributed Ledger
• An “append-only” transaction store distributed across machines (immutability)

• A new transaction might reverse a previous transaction, but both remain part of the 
ledger

• Blockchain
• A distributed ledger structured into a linked list of blocks

• Each block contains an ordered set of transactions

• Use cryptographic hashes to secure the link from a block to its predecessor

10



Defining Blockchain (2)

• A Blockchain System consists of
• A blockchain network of nodes

• A blockchain data structure 

• For the ledger replicated across the blockchain network

• Full nodes hold a full replica of the ledger

• A network protocol

• Defines rights, responsibilities, and means of communication, verification, 
validation, and consensus across the nodes in the blockchain network

• Includes ensuring authorisation and authentication of new transactions, 
mechanisms for appending new blocks, incentive mechanisms

11



Defining Blockchain (3)

• A Public Blockchain is a blockchain system with the following 
characteristics:

• Has an open network

• Nodes can join and leave without requiring permission from anyone

• All full nodes can verify new transactions and blocks

• Incentive mechanism to ensure the correct operation

• Valid transactions are processed and included in the ledger and invalid 
transactions are rejected

• A Blockchain Platform is the technology needed to operate a 
blockchain

• Blockchain client software for processing nodes

• The local data store

• Alternative clients to access the blockchain network

12



Decentralised Applications and Smart 
Contracts 

• Smart contracts
• Programs deployed as data and executed in transactions on the blockchain

• Blockchain can be a computational platform (more than a simple distributed database) 

• Code is deterministic and immutable once deployed

• Can invoke other smart contracts 

• Can hold and transfer digital assets

• Decentralized applications or dapps
• Main functionality is implemented through smart contracts

• Backend is executed in a decentralized environment 

• Frontend can be hosted as a web site on a centralized server

• Interact with its backend through an API 

• Could use decentralized data storage such as IPFS

• “State of the dapps” is a directory recorded on blockchain: 
https://www.stateofthedapps.com/

13

https://www.stateofthedapps.com/


Blockchain defined (1/4)
Verbatim from the Book

• Definition 1 (Distributed Ledger). A Distributed Ledger is an append-
only store of transactions which is distributed across many machines.

• Definition 2 (Blockchain (Concept)). A Blockchain is a distributed 
ledger that is structured into a linked list of blocks. Each block 
contains an ordered set of transactions. Typical solutions use 
cryptographic hashes to secure the link from a block to its 
predecessor.

14



Blockchain defined (2/4)
Verbatim from the Book

• Definition 3 (Blockchain System). A Blockchain System 
consists of: 

• a blockchain network of machines, also called nodes;

• a blockchain data structure, for the ledger that is replicated across the 
blockchain network. Nodes that hold a full replica of this ledger are 
referred to as full nodes; 

• a network protocol that defines rights, responsibilities, and means of 
communication, verification, validation, and consensus across the 
nodes in the network. This includes ensuring authorization and 
authentication of new transactions, mechanisms for appending new 
blocks, incentive mechanisms (if needed), and similar aspects.

15



Blockchain defined (3/4)
Verbatim from the Book

• Definition 4 (Public Blockchain). A Public Blockchain is a 
blockchain system that has the following characteristics: 

• it has an open network where nodes can join and leave as they please 
without requiring permission from anyone; 

• all full nodes in the network can verify each new piece of data added 
to the data structure, including blocks, transactions, and effects of 
transactions; and 

• its protocol includes an incentive mechanism that aims to ensure the 
correct operation of the blockchain system including that valid 
transactions are processed and included in the ledger, and that invalid 
transactions are rejected.

16



Blockchain defined (4/4)
Verbatim from the Book

• Definition 5 (Blockchain Platform). A blockchain platform is the technology 
needed to operate a blockchain. This comprises the blockchain client 
software for processing nodes, the local data store for nodes, and any 
alternative clients to access the blockchain network.

• Definition 6 (Smart Contract). Smart contracts are programs deployed as 
data in the blockchain ledger, and executed in transactions on the 
blockchain. Smart contracts can hold and transfer digital assets managed by 
the blockchain, and can invoke other smart contracts stored on the 
blockchain. Smart contract code is deterministic and immutable once 
deployed.

• Definition 7 (dapp). A decentralized application or dapp is a software system 
that is designed to provide its main functionality through smart contracts. 

17



Book: Architecture for Blockchain 
Applications

Xiwei Xu, Ingo Weber, Mark Staples. 

Architecture for Blockchain Applications. 

Springer, 2019. [1]

➔ Includes the definitions from the 
previous slides

18



Cryptocurrencies and Tokens

• Cryptocurrencies
• ‘Baked in’ to the core platform of public blockchains -base currency of blockchains
• Symbiotic relationship

• Blockchain keeps track of the ownership of portions of that currency, e.g. Alice 
owned 2 Ether, transferred 1 Ether to Bob, offered 0.01 Ether to miner

• Cryptocurrency enables the incentive mechanism for blockchain operations

• Digital tokens
• Created and exchanged using smart contracts
• Represent assets

• Fungible asset: individual units are interchangeable, e.g. company share, gold
• Non-fungible asset: represents a unique asset, e.g. cryptokitties, car title

• Not all applications are the same:
• Transferring coins / tokens vs. tracking movement of physical goods
• Core difference: where is the default version of the truth, on or off-chain?

19



Designing and Developing 
Blockchain Applications 



Overview

• Many interesting applications for Blockchain
• Basically of interest in most lack-of-trust settings where a distributed application can coordinate 

multiple parties

• Examples:

• Supply chains

• Handling of titles, e.g., land, water, vehicles

• Identity

• Many startups and initiatives from enterprises / governments

• ... but also many challenges
• When to use blockchain

• Trade-offs in architecture

• Downsides: cost, latency, confidentiality

• What to handle on-chain, what off-chain?



Work with my former and my new teams

• Architecting applications on Blockchain:
• Book [1]
• Taxonomy and design process [5]
• “Cost of Distrust”: how much more expensive is blockchain? [7]

• On some blockchains, cost and throuhgput are tightly linked
• Availability analysis from viewpoint of dapps [11]
• Latency: simulation under changes [12]
• Multi-tenant applications on blockchain [13]

• Model-driven development of smart contracts
• Business process execution (including the tools Caterpillar [6] and Lorikeet [10])
• Model-based generation of code for data structures, non-fungible and fungible 

tokens, and UI components
• Data extraction and analytics, e.g. Process Mining on blockchain data [3,4]

• Blockchain Patterns – reusable experience & inspiration [14,15]
• https://research.csiro.au/blockchainpatterns/

• …

https://research.csiro.au/blockchainpatterns/


Functions blockchain can provide in an 
application architecture

• Blockchain as…

Architectural 
Element

Communi-
cation 

Mechanism

Asset 
Management 
and Control 
Mechanism

Storage 
Element

Computational 
Element

24



Blockchains are Not Stand-Alone Systems

UI for humans

IoT
integration

Auxiliary
databases

Legacy
systems

Key
management

private
data

BIG DATA
Blockchain is a component



Non-Functional Trade-Offs

• Compared to conventional database & script engines,
blockchains have:

(-) Confidentiality, Privacy

(+) Integrity, Non-repudiation

(+ read/ - write) Availability

(-) Modifiability

(-) Throughput / Scalability / Big Data

(+ read/ - write) Latency

Security: combination of 
CIA properties



Design process



Evaluation of Suitability



Designing and Developing 
Blockchain Applications:

Model-driven Engineering 
for Blockchain Applications



Model-driven Engineering & Blockchain

• Model-driven engineering (MDE): 
• A methodology for using models at various levels of abstraction and for different purposes 

during software development
• Low-level models: production code can be directly derived from the models
• High-level models: means of communication between business owners and developers 

implementing a system
• Intermediate levels can support model-based system analysis or system management tools
• Any level: generate a code skeleton or early version of the code
• Can cover static structures (like data models) or dynamic behavior (activity sequences)

• Advantages in the blockchain context:
• Code generation can implement best practices and well-tested building blocks

• Code can adhere to blockchain “standards” (like ERC-20, ERC-721, …)

• Models can be independent of specific blockchain technologies or platforms
• Models are often easier to understand than code – particularly useful in communicating with 

business partners about smart contracts
• Facilitates building trust



MDE for data structures and tokens

• Approach:
• Model data structure (variables, types) – not for fungible tokens
• Model relationships to other types / tokens
• Select features
→ Code is generated – deploy or customize

• Feature examples:
• Fungible tokens:

• Can be minted? Burnt? By  whom?

• Non-fungible tokens
• Include standard method(s) for sale
• One contract for all tokens or one per token?

• Code generated is compliant with standards
→ interface syntax and semantics



MDE for Processes – Motivation

• Integration of business processes across organizations:
a key driver of productivity gains

• Collaborative process execution 
• Doable when there is trust – supply chains can be tightly integrated

• Problematic when involved organizations have a lack of trust in each 
other
→ if 3+ parties should collaborate, where to execute the process that 
ties them together?

• Common situation in “coopetition”



Motivation: example

Issues:
- Knowing the status, 

tracking correct 
execution

- Handling payments
- Resolving conflicts

33



Motivation: example

Issues:
- Knowing the status, 

tracking correct 
execution

- Handling payments
- Resolving conflicts

Service 
Interface

34



Approach in a nutshell [2]

• Goal: implement collaborative business processes as smart 
contracts

• Translate (enriched) BPMN to smart contract code
• Triggers act as bridge between Enterprise world and blockchain
• Smart contract provides:

• Independent, global process monitoring
• Conformance checking and process enforcement: only expected messages are accepted, 

only from the respective role
• Automatic payments & escrow
• Data transformation
• Encryption

• Processes can make use of data / token contracts
• Process activity to hand over title to a car / shipment / grain / ..., e.g., 

in exchange for fungible tokens



Combining process and data/token models

36



Data61 tool: Lorikeet [10]

• Lorikeet: automatic generate smart contracts from BPMN 
models/registry data schema

BPMN translator

Registry model

Registry 

generator

Smart 

contract for 

registry

BPMN model Connector

Smart contract generator

BPMN and registry modeller

Blockchain network

Deployed 

smart 

contract

Compilation

Deployment

Communication

Blockchain trigger

Blockchain

node

Smart 

contract 

for BP



Design time for fungible tokens



Design time for data models / non-fungible tokens



Demo video: https://drive.google.com/file/d/1rpy-oHbDVkXa6u4Fn73wSX8rINn1sv3U/view

Design time for process models

https://drive.google.com/file/d/1rpy-oHbDVkXa6u4Fn73wSX8rINn1sv3U/view


Runtime View of Process Instances



• Code is immutable!

• Consequences:
• Follow all security best practices

• Test heavily

• Do code reviews

• Build in features for updating as needed and acceptable for the user base
• Governance for updates, e.g.: updates will become active only after 1 week / 1 

month, …

• Understand all (relevant) parts of the blockchain system – if you get it wrong, 
there is no safety net

• Design includes potentially hard trade-offs between confidentiality and 
transparency, though patterns exist for resolving parts of those

General remarks about developing 
blockchain applications



Integrating Blockchain-based 
Applications with Services



Related keynote paper:

Ingo Weber. Blockchain and services - exploring the links: Keynote paper. In ASSRI'18: Australian 
Symposium on Service Research and Innovation, pages 13-21, October 2019. [9]

44



Blockchain is a closed-world system

• To interact with smart contracts on blockchain, need to:
• Write: create and broadcast a blockchain transaction (BCTX) for each method call

• Read: monitor smart contract variable values and/or event logs to see updates

• The outside world speaks Services 
• REST / SOAP-WSDL / JSON RPC

• How to bridge between the two worlds?
• Recurring problem

• Our solution: a Trigger component as bridge

45



Trigger as bridge between blockchain and 
services

Blockchain

Smart contract

Code

Variables Event 
log

Trigger

AppAppApp



Decentralization

Blockchain

Smart contract

Code

Variables Event 
log

Trigger

AppAppApp

Org 1

Trigger
AppAppApp

Org 2



Blockchain-as-a-Service



Motivation

• Blockchain is a relatively new technology with steep learning curve
• Gartner survey: “23 percent of [relevant surveyed] CIOs said that blockchain requires the most new 

skills to implement of any technology area, while 18 percent said that blockchain skills are the most 
difficult to find.”

• aaS offers can bootstrap that learning phase to a degree
• Pre-made templates 

• Management tools

• IDEs

• Monitoring tools

• ...



Commercial Offers

• But: what if all nodes are using the same provider?
• Decentralization?



Unified approach: uBaaS [8]

• Deployment as a service 
• Includes a blockchain deployment service and 

a smart contract deployment service

• Platform agnostic to avoid lock-in to specific 
cloud platforms

• Design patterns as a service 
• Common data management services and smart 

contract design services

• Based on a design pattern to better leverage 
the unique properties of blockchain (i.e. 
immutability and data integrity, transparency) 
and address the limitations (i.e. privacy and 
scalability)

Blockchain network

Blockchain

node

Design pattern as a service

Deployment as a service

Auxiliary services

Blockchain deploymentSmart contract deployment

Key generation File comparison

On-chain & off-chain

Data management

Data encryption

Smart contract design

Multiple authorities

Dynamic binding

Hash integrity Embedded permission



Service-orientation vs. 
Smart Contracts



Microservice Architecture

• Each user request is satisfied 
by some sequence of services

• Most services are not 
externally available

• Each service communicates 
with other services through 
service interfaces

• Service depth may be 70, 
e.g., LinkedIn

Business Service

Microservice

Microservice

Microservice Microservice Microservice

Microservice Microservice Microservice

MicroserviceMicroservice Microservice

53



Smart Contracts as Services?

• Analogy:
• Smart contract code ≈ Java Class
• Deployed smart contract ≈ Java Object, but with some 

properties
• Defined interface

• Standard way to invoke

• Callable by anyone (who can send transactions to the blockchain)

→ Similar to Web service!

• Some design principles can apply 

54



Service-Orientation Design Principles 

• Standardized Service Contract: the public interfaces of a services make use of contract design 
standards. (Contract: WSDL in WS*)

• Service Loose Coupling: to impose low burdens on service consumers (coupling ~ degree of 
dependency)

• Service Abstraction: “to hide as much of the underlying details of a service as possible”

• Service Reusability: services contain agnostic logic and “can be positioned as reusable enterprise 
resources”

• Service Autonomy: to provide reliable and consistent results, a service has to have strong control 
over its underlying environment

• Service Statelessness: services should be “designed to remain stateful only when required.”

• Service Discoverability: “services are supplemented with communicative meta data by which 
they can be effectively discovered and interpreted.”

• Service Composability: “services are effective composition participants, regardless of the size and 
complexity of the composition.”

• Fundamental requirement – interoperability of services: “...stating that services must be 
interoperable is just about as evident as stating that services must exist.”

Based on SOA Principles of Service Design, Thomas Erl, Prentice Hall, 2007, http://serviceorientation.com/serviceorientation.
Summary: I. Weber, Semantic Methods for Execution-level Business Process Modeling. Springer LNBIP Vol. 40, 2009.



✓



~

✓





~



55



Microservice Principles

• Small, focused functionality

• Split of responsibility

• Full-stack & independently updatable without downtime

• Stateless

• While some design principles for Microservice Architectures apply, 
others do not

• Updates can be independent

• But reliance on the inability of anyone to update without agreement / 
governance is one source of trust in a smart contract

✓

✓

~



56



Selected Applications & Adoption



Selected Blockchain Projects

• Australian Securities Exchange:
• Settlement of trades to be sped up from 2-3 days to minutes, freeing up billions of $$
• In industry engagement, revision based on feedback and testing ongoing 
• Go-live of the blockchain system planned for 2021 / 2022

•Modum.io:
• Ensure drugs do not exceed a temperature threshold

• Tamper-proof IoT device & blockchain storage of data
• Otherwise: use refrigeration trucks, 4-8x pricier

• Lygon.io
• Joint initiative by Australian Banks
• Platform for blockchain-based bank guarantees for commercial property leases

• “Before Lygon, issuing a paper bank guarantee took up to a month.
Today, Lygon achieves same-day issuance.”

• Digital bearer instrument

Picture source: modum.io

58



Programmable Money [16]: core idea 

• Conditional payments: the transfer money only when predefined rules hold.
• Examples: welfare payments, employee expenses, insurance payouts, ... 

• Traditionally: conditions are checked (manually) in reimbursement or pre-
approval/audit processes

• Violation of policies: no reimbursement (or similar)

• Programmable money: next-generation conditional payments, on 
decentralized ledger / blockchain.

• In our programmable money project: programmed policies are not attached 
to accounts, but instead to money itself! 

• Policies here specify under which conditions money may be spent
• When you try to spend money, the money itself checks automatically if a payment 

adheres to the policies
→ no uncertainty whether you will get reimbursed (and other benefits)

59



Programmable Money (“making money smart”)
Use case: National Disability Insurance Scheme (NDIS)

Tokens and Contracts

Provider Registry Contract

Pouches represent 

different quantities of 

tokens.

Tokens represent 

value of AUD for 

NDIS purchases.

Policy contracts stipulate 

rules and enforcements 

(e.g. ownership, eligible 

services, nominations, etc).

Smart tokens are formed when policy 

contracts are attached to pouches. 

Contracts can be destroyed when no longer 

required (e.g. after payment).

Participant plans

Providers are 

registered on a 

large policy 

contract.

Participant plans have pouches of smart 

tokens for different budgets, which can be 

spent on services from providers.

Service Agreement Contracts

Service agreements provisionally attach 

tokens to providers and enable payments 

as services are delivered.

$

$

$

$

$

$

60



Programmable Money: our NDIS proof of concept

Blockchain

NDIA Participant

Participant books 
eligible services 
using the app 

Service 
Provider

Conditions 
checked

Agency 
Manager

Plan 
Manager

Carers / 
Guardians

Service providers 
receive smart tokens for 

eligible services

Policy contracts 
reflect budget rules

Policy contracts can blend plan management approaches

New Payments Platform

Service provider redeems smart 
tokens for payment

NDIA facilitates data-rich 
payments in near real-time

Smart 
Tokens

Blockchain tokens 
reflect plan budgets

Pouch of 
Tokens

61



Programmable Money: further notes

• Many more details contained in the keynote paper
Ingo Weber and Mark Staples. Programmable money: Next-generation 
conditional payments using blockchain - keynote paper. In CLOSER'21: 
International Conference on Cloud Computing and Services Science, April 2021.

• Including lessons learnt and some open questions, for programmable 
money and development of blockchain apps in general. Examples:

• How to present the policies in a way that the users can understand them?

• How to horizontally scale components that create and submit transactions on 
behalf of a single party? 

62



Selected blockchain adoption examples

63

https://www.unicef.org/innovation/blockchain

https://www.unicef.org/innovation/blockchain


Summary

• Blockchain basics and terminology

• Designing and developing blockchain applications
• Architecture & design

• Model-driven engineering

• Blockchain and Services:
• Integrating Blockchain-based Applications with Services

• Blockchain-as-a-Service

• Service-orientation vs. Smart Contracts

• Programmable money

• Blockchain adoption

64



Blockchain Application Design and 
Development, and 
the Case of Programmable Money

CLOSER’21 Keynote

Prof. Dr. Ingo Weber | April 2021

ingo.weber@tu-berlin.de | linkedin.com/in/ingomweber/ | Twitter:  @ingomweber

mailto:ingo.weber@tu-berlin.de
https://www.linkedin.com/in/ingomweber/
https://twitter.com/ingomweber


References (1)

1. Xiwei Xu, Ingo Weber, Mark Staples. Architecture for Blockchain Applications. Springer, 2019.

2. Ingo Weber, Xiwei Xu, Régis Riveret, Guido Governatori, Alexander Ponomarev, and Jan Mendling. Untrusted business process 
monitoring and execution using blockchain. In BPM'16: International Conference on Business Process Management, Rio de Janeiro, 
Brazil, September 2016.

3. Christopher Klinkmüller, Ingo Weber, Alexander Ponomarev, An Binh Tran, Wil van der Aalst. Efficient Logging for Blockchain 
Applications. arXiv:2001.10281 [cs.SE], January 2020, https://arxiv.org/abs/2001.10281

4. Christopher Klinkmüller, Alex Ponomarev, An Binh Tran, Ingo Weber, and Wil van der Aalst. Mining blockchain processes: Extracting 
process mining data from blockchain applications. In Blockchain Forum of the International Conference on Business Process 
Management (BPM), Vienna, Austria, September 2019. 

5. Xiwei Xu, Ingo Weber, Mark Staples, Liming Zhu, Jan Bosch, Len Bass, Cesare Pautasso, and Paul Rimba. A taxonomy of blockchain-
based systems for architecture design. In ICSA'17: IEEE International Conference on Software Architecture, Gothenburg, Sweden, 
April 2017.

6. Orlenys López-Pintado, Luciano García-Bañuelos, Marlon Dumas, Ingo Weber, and Alex Ponomarev. Caterpillar: A business process 
execution engine on the Ethereum blockchain. Software: Practice and Experience, 49:1162-1193, May 2019.

7. Rimba, P., Tran, A. B., Weber, I., Staples, M., Ponomarev, A., and Xu, X. Quantifying the cost of distrust: Comparing blockchain and 
cloud services for business process execution. Information Systems Frontiers 22, 2 (2020), 489–507.

8. Qinghua Lu, Xiwei Xu, Yue Liu, Ingo Weber, Liming Zhu, and Weishan Zhang. uBaaS: A unified blockchain as a service platform. 
Future Generation Computer Systems (FGCS), 101:564-575, 2019.

9. Ingo Weber. Blockchain and services - exploring the links: Keynote paper. In ASSRI'18: Australian Symposium on Service Research 
and Innovation, pages 13-21, October 2019.

10. Qinghua Lu, An Binh Tran, Ingo Weber, Hugo O'Connor, Paul Rimba, Xiwei Xu, Mark Staples, Liming Zhu, and Ross Jeffery. 
Integrated model-driven engineering of blockchain applications for business processes and asset management. Software: Practice 
and Experience, 51(5):1059-1079, May 2021.

66

https://arxiv.org/abs/2001.10281


References (2)

11. Ingo Weber, Vincent Gramoli, Mark Staples, Alex Ponomarev, Ralph Holz, An Binh Tran, and Paul Rimba. On availability 
for blockchain-based systems. In SRDS'17: IEEE International Symposium on Reliable Distributed Systems, pages 64-73, 
Hong Kong, China, September 2017.

12. Rajitha Yasaweerasinghelage, Mark Staples, and Ingo Weber. Predicting latency of blockchain-based systems using 
architectural modelling and simulation. In ICSA'17: IEEE International Conference on Software Architecture, short paper, 
Gothenburg, Sweden, April 2017.

13. Ingo Weber, Qinghua Lu, An Binh Tran, Amit Deshmukh, Marek Gorski, and Markus Strazds. A platform architecture for 
multi-tenant blockchain-based systems. In ICSA'19: IEEE International Conference on Software Architecture, Hamburg, 
Germany, April 2019.

14. Xiwei Xu, Cesare Pautasso, Liming Zhu, Qinghua Lu, and Ingo Weber. A pattern collection for blockchain-based 
applications. In EuroPLoP'18: European Conference on Pattern Languages of Programs, Kloster Irsee, Germany, July 
2018.

15. Xiwei Xu, HMN Dilum Bandara, Qinghua Lu, Ingo Weber, Len Bass, and Liming Zhu. A decision model for choosing 
patterns in blockchain-based applications. In ICSA'21: IEEE International Conference on Software Architecture, March 
2021.

16. Ingo Weber and Mark Staples. Programmable money: Next-generation conditional payments using blockchain - keynote 
paper. In CLOSER'21: International Conference on Cloud Computing and Services Science, April 2021.

67


